Datasets:

Modalities:
Image
Text
Formats:
parquet
DOI:
Libraries:
Datasets
Dask
License:
WildBe-v2 / README.md
luigiriz's picture
Update README.md
2b864ed verified
metadata
license: cc-by-nc-4.0
task_categories:
  - object-detection
pretty_name: WildBe-v2
size_categories:
  - 1K<n<10K
tags:
  - drone imagery
  - agriculture
  - in the wild
dataset_info:
  features:
    - name: index
      dtype: int64
    - name: image
      dtype: image
    - name: w
      dtype: int64
    - name: h
      dtype: int64
    - name: split
      dtype: string
    - name: provenance
      dtype: string
    - name: source_image_id
      dtype: string
    - name: labels
      dtype: string

WildBe-v2: Expanded Drone Imagery of Wild Berries in Finnish Forests

Example Images

WildBe-v2 Example 1 WildBe-v2 Example 2 WildBe-v2 Example 3 WildBe-v2 Example 4

Dataset Description

Introduction

We present WildBe-v2, the evolution and expansion of the original WildBe dataset, the first drone-captured collection of wild berries from Finnish peatlands and forest canopies. WildBe-v2 introduces 11 classes, including five berry types (bilberries, cloudberries, crowberries, lingonberries, and bog bilberries) annotated in ripe and unripe states, plus the mushroom class. The dataset now comprises 21K images and over 61K annotations collected from seven distinct locations. This broader coverage enhances variability in lighting, vegetation, and background complexity, offering a richer benchmark for research on object detection and visual understanding in the wild.

Dataset Classes

The dataset contains 11 classes, mapped to the integer IDs in the labels:

  0  →  bilberry 
  1  →  bilberry-unripe 
  2  →  cloudberry 
  3  →  cloudberry-unripe  
  4  →  crowberry  
  5  →  crowberry-unripe  
  6  →  lingonberry  
  7  →  lingonberry-unripe  
  8  →  bog-bilberry 
  9  →  bog-bilberry-unripe
 10  →  mushroom

How to use: an example of visualization

import json

from datasets import load_dataset
from PIL import ImageDraw

# Color map for classes
classes_color_map = {
    0: (4, 200, 86),     # dark-pastel-green
    1: (14, 251, 113),   # spring-green
    2: (204, 153, 0),    # goldenrod
    3: (255, 199, 31),   # mikado-yellow
    4: (0, 143, 204),    # blue-ncs
    5: (31, 188, 255),   # deep-sky-blue
    6: (184, 0, 95),     # amaranth-purple
    7: (255, 10, 137),   # magenta
    8: (255, 181, 112),  # sandy-brown
    9: (255, 202, 153),  # peach
    10: (165, 82, 42),   # rustbrown
}

# Load the dataset
dataset = load_dataset("FBK-TeV/WildBe-v2", split="validation")
dataset = dataset.shuffle(seed=42)

sample_idx = 30
image = dataset[sample_idx]["image"]
labels = json.loads(dataset[sample_idx]["labels"])

draw = ImageDraw.Draw(image)

for label in labels:
    center_x = label["x"] * dataset[sample_idx]["w"]
    center_y = label["y"] * dataset[sample_idx]["h"]
    width = label["width"] * dataset[sample_idx]["w"]
    height = label["height"] * dataset[sample_idx]["h"]
    draw.rectangle(
        [
            (center_x - width / 2, center_y - height / 2),
            (center_x + width / 2, center_y + height / 2),
        ],
        outline=classes_color_map[label["class"]],
        width=2,
    )

image.show()

Example

Data Fields

index: An integer representing the unique identifier for each example.
image: A PIL image.
w: image width
h: image height
split: A string indicating the data split, e.g., 'train', 'validation', or 'test'.
provenance: A string ("A", "B", ...) indicating the area in which the image has been collected
source_image_id: A string representing the unique identifier for the source image from which the image was cropped. 
labels: A list of dictionaries, each containing:
  class: An integer representing the class identifier.
  label: A string representing the class name.
  x: A float representing the normalized x-coordinate of the center of the bounding box.
  y: A float representing the normalized y-coordinate of the center of the bounding box.
  width: A float representing the normalized width of the bounding box.
  height: A float representing the normalized height of the bounding box.

Acknowledgement

FEROX logo

The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA).

If you use WildBe-v2

If you use WildBe-v2 in your work, please consider citing our previous paper:

APA Citation

Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., Turtiainen, M., Partanen, B., Ballester, L. S., Noguera, F. B., & Poiesi, F. (2025). Wild Berry Image Dataset Collected in Finnish Forests and Peatlands Using Drones. In Computer Vision – ECCV 2024 Workshops. Springer Nature Switzerland.

Bibtex

@InProceedings{riz2024wild,
  title={Wild Berry Image Dataset Collected in Finnish Forests and Peatlands Using Drones},
  author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
  booktitle="Computer Vision -- ECCV 2024 Workshops",
  year="2025",
  publisher="Springer Nature Switzerland",
}

Partners

FBK TAU UPV ING FGI CU DF GEM AFA