Datasets:
license: cc-by-nc-4.0
task_categories:
- object-detection
pretty_name: WildBe-v2
size_categories:
- 1K<n<10K
tags:
- drone imagery
- agriculture
- in the wild
dataset_info:
features:
- name: index
dtype: int64
- name: image
dtype: image
- name: w
dtype: int64
- name: h
dtype: int64
- name: split
dtype: string
- name: provenance
dtype: string
- name: source_image_id
dtype: string
- name: labels
dtype: string
WildBe-v2: Expanded Drone Imagery of Wild Berries in Finnish Forests
Example Images
Dataset Description
- Homepage: https://ferox.fbk.eu/
Introduction
We present WildBe-v2, the evolution and expansion of the original WildBe dataset, the first drone-captured collection of wild berries from Finnish peatlands and forest canopies. WildBe-v2 introduces 11 classes, including five berry types (bilberries, cloudberries, crowberries, lingonberries, and bog bilberries) annotated in ripe and unripe states, plus the mushroom class. The dataset now comprises 21K images and over 61K annotations collected from seven distinct locations. This broader coverage enhances variability in lighting, vegetation, and background complexity, offering a richer benchmark for research on object detection and visual understanding in the wild.
Dataset Classes
The dataset contains 11 classes, mapped to the integer IDs in the labels:
0 → bilberry
1 → bilberry-unripe
2 → cloudberry
3 → cloudberry-unripe
4 → crowberry
5 → crowberry-unripe
6 → lingonberry
7 → lingonberry-unripe
8 → bog-bilberry
9 → bog-bilberry-unripe
10 → mushroom
How to use: an example of visualization
import json
from datasets import load_dataset
from PIL import ImageDraw
# Color map for classes
classes_color_map = {
0: (4, 200, 86), # dark-pastel-green
1: (14, 251, 113), # spring-green
2: (204, 153, 0), # goldenrod
3: (255, 199, 31), # mikado-yellow
4: (0, 143, 204), # blue-ncs
5: (31, 188, 255), # deep-sky-blue
6: (184, 0, 95), # amaranth-purple
7: (255, 10, 137), # magenta
8: (255, 181, 112), # sandy-brown
9: (255, 202, 153), # peach
10: (165, 82, 42), # rustbrown
}
# Load the dataset
dataset = load_dataset("FBK-TeV/WildBe-v2", split="validation")
dataset = dataset.shuffle(seed=42)
sample_idx = 30
image = dataset[sample_idx]["image"]
labels = json.loads(dataset[sample_idx]["labels"])
draw = ImageDraw.Draw(image)
for label in labels:
center_x = label["x"] * dataset[sample_idx]["w"]
center_y = label["y"] * dataset[sample_idx]["h"]
width = label["width"] * dataset[sample_idx]["w"]
height = label["height"] * dataset[sample_idx]["h"]
draw.rectangle(
[
(center_x - width / 2, center_y - height / 2),
(center_x + width / 2, center_y + height / 2),
],
outline=classes_color_map[label["class"]],
width=2,
)
image.show()
Data Fields
index: An integer representing the unique identifier for each example.
image: A PIL image.
w: image width
h: image height
split: A string indicating the data split, e.g., 'train', 'validation', or 'test'.
provenance: A string ("A", "B", ...) indicating the area in which the image has been collected
source_image_id: A string representing the unique identifier for the source image from which the image was cropped.
labels: A list of dictionaries, each containing:
class: An integer representing the class identifier.
label: A string representing the class name.
x: A float representing the normalized x-coordinate of the center of the bounding box.
y: A float representing the normalized y-coordinate of the center of the bounding box.
width: A float representing the normalized width of the bounding box.
height: A float representing the normalized height of the bounding box.
Acknowledgement
The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA).
If you use WildBe-v2
If you use WildBe-v2 in your work, please consider citing our previous paper:
APA Citation
Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., Turtiainen, M., Partanen, B., Ballester, L. S., Noguera, F. B., & Poiesi, F. (2025). Wild Berry Image Dataset Collected in Finnish Forests and Peatlands Using Drones. In Computer Vision – ECCV 2024 Workshops. Springer Nature Switzerland.
Bibtex
@InProceedings{riz2024wild,
title={Wild Berry Image Dataset Collected in Finnish Forests and Peatlands Using Drones},
author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others},
booktitle="Computer Vision -- ECCV 2024 Workshops",
year="2025",
publisher="Springer Nature Switzerland",
}
Partners
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |









