Kenneth Enevoldsen commited on
Commit
32e9f98
·
1 Parent(s): 02d1b4a

Added creation scripts

Browse files
dataset_creation_scripts/annotate.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import pickle
3
+ from pathlib import Path
4
+
5
+ from spacy.tokens import Span
6
+
7
+ import dacy
8
+ from dacy.datasets import dane
9
+
10
+
11
+ def load_examples():
12
+ save_path = Path("examples.pkl")
13
+ if save_path.exists():
14
+ with open(save_path, "rb") as f:
15
+ examples = pickle.load(f)
16
+
17
+ return examples
18
+
19
+ train, dev, test = dane()
20
+
21
+ nlp = dacy.load("da_dacy_large_ner_fine_grained-0.1.0")
22
+
23
+ examples = list(test(nlp)) + list(train(nlp)) + list(dev(nlp))
24
+
25
+ docs = nlp.pipe([ex.x.text for ex in examples])
26
+
27
+ for e in examples:
28
+ e.predicted = next(docs)
29
+
30
+ with open("examples.pkl", "wb") as f:
31
+ pickle.dump(examples, f)
32
+
33
+ return examples
34
+
35
+
36
+ def normalize_examples(examples):
37
+ label_mapping = {
38
+ "PER": "PERSON",
39
+ "LOC": "LOCATION",
40
+ "ORG": "ORGANIZATION",
41
+ "MISC": "MISC",
42
+ }
43
+
44
+ for e in examples:
45
+ old_ents = e.y.ents
46
+ new_ents = []
47
+ for ent in old_ents:
48
+ new_label = label_mapping[ent.label_]
49
+ new_ent = Span(e.y, start=ent.start, end=ent.end, label=new_label)
50
+ new_ents.append(new_ent)
51
+
52
+ e.y.ents = new_ents
53
+
54
+ return examples
55
+
56
+
57
+ def example_to_review_format(example) -> dict:
58
+ ref = example.y
59
+
60
+ text = ref.text
61
+ tokens = [
62
+ {"text": t.text, "start": t.idx, "end": t.idx + len(t), "id": i}
63
+ for i, t in enumerate(ref)
64
+ ]
65
+ answer = "accept"
66
+
67
+ versions = []
68
+
69
+ v_ref_spans = [
70
+ {
71
+ "start": s.start_char,
72
+ "end": s.end_char,
73
+ "label": s.label_,
74
+ "token_start": s.start,
75
+ "token_end": s.end - 1,
76
+ }
77
+ for s in ref.ents
78
+ ]
79
+ v_ref = {
80
+ "text": text,
81
+ "tokens": tokens,
82
+ "spans": v_ref_spans,
83
+ "answer": answer,
84
+ "sessions": ["reference"],
85
+ "default": True,
86
+ }
87
+ versions.append(v_ref)
88
+
89
+ v_pred_spans = [
90
+ {
91
+ "start": s.start_char,
92
+ "end": s.end_char,
93
+ "label": s.label_,
94
+ "token_start": s.start,
95
+ "token_end": s.end - 1,
96
+ }
97
+ for s in example.predicted.ents
98
+ ]
99
+ v_pred = {
100
+ "text": text,
101
+ "tokens": tokens,
102
+ "spans": v_pred_spans,
103
+ "answer": answer,
104
+ "sessions": ["da_dacy_large_ner_fine_grained-0.1.0"],
105
+ "default": True,
106
+ }
107
+ versions.append(v_pred)
108
+
109
+ return {
110
+ "text": text,
111
+ "tokens": tokens,
112
+ "answer": answer,
113
+ "view_id": "ner_manual",
114
+ "versions": versions,
115
+ }
116
+
117
+
118
+ if __name__ == "__main__":
119
+ examples = load_examples()
120
+
121
+ ",".join(set([ent.label_ for e in examples for ent in e.x.ents]))
122
+
123
+ jsonl_data = [example_to_review_format(e) for e in normalize_examples(examples)]
124
+
125
+ with open("examples.jsonl", "w") as f:
126
+ for json_dict in jsonl_data:
127
+ line = json.dumps(json_dict)
128
+ f.write(f"{line}\n")
129
+
130
+ with open("reference.jsonl", "w") as f:
131
+ for json_dict in jsonl_data:
132
+ line = json.dumps(json_dict["versions"][0])
133
+ f.write(f"{line}\n")
134
+
135
+ with open("predictions.jsonl", "w") as f:
136
+ for json_dict in jsonl_data:
137
+ line = json.dumps(json_dict["versions"][1])
138
+ f.write(f"{line}\n")
dataset_creation_scripts/split.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spacy
2
+ from numpy import char
3
+ from spacy.tokens import Doc, DocBin
4
+
5
+ train_dane = "/Users/au561649/Github/DaCy/training/main/corpus/dane/train.spacy"
6
+ dev_dane = "/Users/au561649/Github/DaCy/training/main/corpus/dane/dev.spacy"
7
+ test_dane = "/Users/au561649/Github/DaCy/training/main/corpus/dane/test.spacy"
8
+
9
+
10
+ nlp = spacy.blank("da")
11
+ # train, dev, test = dane()
12
+ train_docs = list(DocBin().from_disk(train_dane).get_docs(nlp.vocab))
13
+ dev_docs = list(DocBin().from_disk(dev_dane).get_docs(nlp.vocab))
14
+ test_docs = list(DocBin().from_disk(test_dane).get_docs(nlp.vocab))
15
+
16
+ Doc.set_extension("split", default=None)
17
+
18
+ for split, nam in zip([train_docs, dev_docs, test_docs], ["train", "dev", "test"]):
19
+ for doc in split:
20
+ doc._.split = nam
21
+
22
+ # text2doc = {}
23
+ # n_duplicates = 0 # all looks like non-actual duplicates (e.g. "stk. 2")
24
+ # for i, doc in enumerate(test_docs + train_docs + dev_docs):
25
+ # if doc.text in text2doc:
26
+ # print(f"Duplicate found: {doc.text}")
27
+ # print("split:": doc._.split)
28
+ # n_duplicates += 1
29
+ # text2doc[doc.text] = doc
30
+
31
+
32
+ # load daneplus
33
+ path_to_data = "/Users/au561649/Github/DaCy/training/dane_plus/train.spacy"
34
+ train_data = DocBin().from_disk(path_to_data)
35
+ daneplus_docs = list(train_data.get_docs(nlp.vocab))
36
+
37
+ text2doc = {}
38
+ n_duplicates = 0 # No duplicates (prodigy removed them - this will be problematic when reconstructing the documents - so therefore we re-annotate the dane documents)
39
+ for i, doc in enumerate(daneplus_docs):
40
+ if doc.text in text2doc:
41
+ print(f"Duplicate found: {doc.text}")
42
+ n_duplicates += 1
43
+ text2doc[doc.text] = doc
44
+
45
+ # Add the daneplus annotations to the dane documents
46
+ docs_to_fix = []
47
+ for doc in train_docs + dev_docs + test_docs:
48
+ if doc.text in text2doc:
49
+ _ents_to_add = text2doc[doc.text].ents
50
+ ents_to_add = []
51
+ for ent in _ents_to_add:
52
+ char_span = doc.char_span(ent.start_char, ent.end_char, label=ent.label_)
53
+ if char_span is None:
54
+ print(f"Entity could not be added: {ent.text}")
55
+ docs_to_fix.append((doc, ent))
56
+ continue
57
+ ents_to_add.append(char_span)
58
+ doc.ents = ents_to_add # type: ignore
59
+
60
+ # manual fixes (due to difference in tokenization)
61
+ doc, ent = docs_to_fix[0]
62
+ ents = list(doc.ents)
63
+ _ent = doc[-2:-1]
64
+ new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_)
65
+ print("added", new_ent, "to", doc.text)
66
+ ents.append(new_ent)
67
+ doc.ents = ents
68
+
69
+
70
+ doc, ent = docs_to_fix[1]
71
+ ents = list(doc.ents)
72
+ _ent = doc[-3:-1]
73
+ new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_)
74
+ ents.append(new_ent)
75
+ doc.ents = ents
76
+ print("added", new_ent, "to", doc.text)
77
+
78
+ doc, ent = docs_to_fix[2]
79
+ ents = list(doc.ents)
80
+ _ent = doc[-3:-1]
81
+ new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_)
82
+ ents.append(new_ent)
83
+ doc.ents = ents
84
+ print("added", new_ent, "to", doc.text)
85
+
86
+ doc, ent = docs_to_fix[3]
87
+ ents = list(doc.ents)
88
+ _ent = doc[-3:-1]
89
+ new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_)
90
+ ents.append(new_ent)
91
+ doc.ents = ents
92
+ print("added", new_ent, "to", doc.text)
93
+
94
+ doc, ent = docs_to_fix[4]
95
+ ents = list(doc.ents)
96
+ _ent = doc[-3:-1]
97
+ new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_)
98
+ ents.append(new_ent)
99
+ doc.ents = ents
100
+ print("added", new_ent, "to", doc.text)
101
+
102
+ doc, ent = docs_to_fix[5]
103
+ ents = list(doc.ents)
104
+ _ent = doc[-3:-1]
105
+ new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_)
106
+ ents.append(new_ent)
107
+ doc.ents = ents
108
+ print("added", new_ent, "to", doc.text)
109
+
110
+
111
+ # Save the new documents
112
+ new_train = DocBin(docs=train_docs)
113
+ new_dev = DocBin(docs=dev_docs)
114
+ new_test = DocBin(docs=test_docs)
115
+
116
+ new_train.to_disk("train.spacy")
117
+ new_dev.to_disk("dev.spacy")
118
+ new_test.to_disk("test.spacy")
dataset_creation_scripts/upload_to_hf.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import Dataset, DatasetDict
2
+ from spacy.tokens import DocBin
3
+ import spacy
4
+
5
+
6
+ def convert_spacy_docs_to_hf_entry(doc) -> dict:
7
+ return doc.to_json()
8
+
9
+ train = "/Users/au561649/Github/DaCy/training/dane_plus/train.spacy"
10
+ dev = "/Users/au561649/Github/DaCy/training/dane_plus/dev.spacy"
11
+ test = "/Users/au561649/Github/DaCy/training/dane_plus/test.spacy"
12
+
13
+ nlp = spacy.blank("da")
14
+
15
+ train_docs = list(DocBin().from_disk(train).get_docs(nlp.vocab))
16
+ dev_docs = list(DocBin().from_disk(dev).get_docs(nlp.vocab))
17
+ test_docs = list(DocBin().from_disk(test).get_docs(nlp.vocab))
18
+
19
+
20
+ # my_list = [{"a": 1}, {"a": 2}, {"a": 3}]
21
+ # dataset = Dataset.from_list(my_list)
22
+
23
+ train_dataset = Dataset.from_list([convert_spacy_docs_to_hf_entry(doc) for doc in train_docs])
24
+ dev_dataset = Dataset.from_list([convert_spacy_docs_to_hf_entry(doc) for doc in dev_docs])
25
+ test_dataset = Dataset.from_list([convert_spacy_docs_to_hf_entry(doc) for doc in test_docs])
26
+
27
+ dataset_dict = DatasetDict({"train": train_dataset, "dev": dev_dataset, "test": test_dataset})
28
+
29
+ dataset_dict.push_to_hub("dane_plus")