Commit
·
d173fd4
1
Parent(s):
792a3e7
Upload 284 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- 0_data_process_CAM5.py +229 -0
- 0_data_process_SPCAM5.py +246 -0
- 1_create_train_test.py +144 -0
- 2_candle_plots_data_distr.py +175 -0
- 2_norm.py +94 -0
- 3_train_RPN_MF.py +325 -0
- 3_train_RPN_SF.py +238 -0
- 4_concat_param.py +429 -0
- 4_pred_RPN_LF.py +171 -0
- 4_pred_RPN_MF.py +190 -0
- 4_pred_RPN_SF.py +168 -0
- 4_pred_RPN_det.py +167 -0
- 5_mean_std_RPN_LF.py +55 -0
- 5_mean_std_RPN_MF.py +123 -0
- 5_mean_std_RPN_SF.py +57 -0
- 6_reshape_pred_RPN.py +110 -0
- 7_global_crps.py +220 -0
- 7_global_errors_temporal_errors.py +163 -0
- 7_long_lat_errors.py +95 -0
- 7_pressure_lat_errors.py +83 -0
- 8_long_lat_plots.py +234 -0
- 8_plot_global_errors.py +327 -0
- 8_pressure_lat_plots.py +130 -0
- 8_uncertainty_density_plot.py +231 -0
- 9_uncertainty_video.py +180 -0
- 9_uncertainty_video_daily.py +191 -0
- candle_plots_1st_lvl_SS_moist_tend.png +3 -0
- candle_plots_5_pr_lvls_heat_tend_and_spec_hum.png +3 -0
- glob_errors/CRPS_heat.png +3 -0
- glob_errors/CRPS_moist.png +3 -0
- glob_errors/MAE_det.npy +3 -0
- glob_errors/MAE_heat.png +3 -0
- glob_errors/MAE_moist.png +3 -0
- glob_errors/MAE_rpn_LF.npy +3 -0
- glob_errors/MAE_rpn_MF.npy +3 -0
- glob_errors/MAE_rpn_SF.npy +3 -0
- glob_errors/R2_w_neg_heat.png +3 -0
- glob_errors/R2_w_neg_moist.png +3 -0
- glob_errors/R2_wo_neg_heat.png +3 -0
- glob_errors/R2_wo_neg_moist.png +3 -0
- glob_errors/crps_rpn_LF.npy +3 -0
- glob_errors/crps_rpn_MF.npy +3 -0
- glob_errors/crps_rpn_SF.npy +3 -0
- glob_errors/r2_det.npy +3 -0
- glob_errors/r2_rpn_LF.npy +3 -0
- glob_errors/r2_rpn_MF.npy +3 -0
- glob_errors/r2_rpn_SF.npy +3 -0
- long_lat_plots/heat_MAE_long_lat_0.png +3 -0
- long_lat_plots/heat_MAE_long_lat_1.png +3 -0
.gitattributes
CHANGED
|
@@ -53,3 +53,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
videos[[:space:]]compressed/instant_heat_tend_259_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
videos[[:space:]]compressed/instant_heat_tend_494_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
videos[[:space:]]compressed/instant_heat_tend_761_1_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
videos[[:space:]]compressed/instant_heat_tend_761_2_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
videos[[:space:]]compressed/instant_moist_tend_259_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
videos[[:space:]]compressed/instant_moist_tend_494_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
videos[[:space:]]compressed/instant_moist_tend_761_1_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 63 |
+
videos[[:space:]]compressed/instant_moist_tend_761_2_compressed.mp4 filter=lfs diff=lfs merge=lfs -text
|
0_data_process_CAM5.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Mon Apr 3 11:22:45 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
current_dirs_parent = os.path.dirname(os.getcwd())
|
| 11 |
+
current_dirs_parent = os.path.dirname(current_dirs_parent)
|
| 12 |
+
import netCDF4 as nc
|
| 13 |
+
import numpy as onp
|
| 14 |
+
|
| 15 |
+
def read_data(ds0, ds1, ds2):
|
| 16 |
+
|
| 17 |
+
TBP = onp.transpose(ds0.variables['TBP'],axes=(1,0,2,3))
|
| 18 |
+
QBP = onp.transpose(ds0.variables['QBP'],axes=(1,0,2,3))
|
| 19 |
+
CLDLIQBP = onp.transpose(ds0.variables['CLDLIQBP'],axes=(1,0,2,3))
|
| 20 |
+
CLDICEBP = onp.transpose(ds0.variables['CLDICEBP'],axes=(1,0,2,3))
|
| 21 |
+
|
| 22 |
+
TBP = onp.reshape(TBP, (lev, time*lat*lon))
|
| 23 |
+
QBP = onp.reshape(QBP, (lev, time*lat*lon))
|
| 24 |
+
CLDLIQBP = onp.reshape(CLDLIQBP, (lev, time*lat*lon))
|
| 25 |
+
CLDICEBP = onp.reshape(CLDICEBP, (lev, time*lat*lon))
|
| 26 |
+
|
| 27 |
+
PS = onp.reshape(ds0.variables['PS'], (1, time*lat*lon))
|
| 28 |
+
SOLIN = onp.reshape(ds0.variables['SOLIN'], (1, time*lat*lon))
|
| 29 |
+
SHFLX = onp.reshape(ds0.variables['SHFLX'], (1, time*lat*lon))
|
| 30 |
+
LHFLX = onp.reshape(ds0.variables['LHFLX'], (1, time*lat*lon))
|
| 31 |
+
|
| 32 |
+
is_land = onp.reshape(ds0.variables['LANDFRAC'], (1, time*lat*lon)) > onp.reshape(ds0.variables['OCNFRAC'], (1, time*lat*lon))
|
| 33 |
+
|
| 34 |
+
inputs = onp.concatenate((TBP,QBP,CLDLIQBP,CLDICEBP,PS,SOLIN,SHFLX,LHFLX,is_land)).T
|
| 35 |
+
|
| 36 |
+
TBC = onp.transpose(ds1.variables['TBC'],axes=(1,0,2,3))
|
| 37 |
+
TBC = onp.reshape(TBC, (lev, time*lat*lon))
|
| 38 |
+
TBCTEND=(TBC-TBP)/DT
|
| 39 |
+
|
| 40 |
+
QBC = onp.transpose(ds1.variables['QBC'],axes=(1,0,2,3))
|
| 41 |
+
QBC = onp.reshape(QBC, (lev, time*lat*lon))
|
| 42 |
+
QBCTEND=(QBC-QBP)/DT
|
| 43 |
+
|
| 44 |
+
CLDLIQBC = onp.transpose(ds1.variables['CLDLIQBC'],axes=(1,0,2,3))
|
| 45 |
+
CLDLIQBC = onp.reshape(CLDLIQBC, (lev, time*lat*lon))
|
| 46 |
+
CLDLIQBCTEND=(CLDLIQBC-CLDLIQBP)/DT
|
| 47 |
+
|
| 48 |
+
CLDICEBC = onp.transpose(ds1.variables['CLDICEBC'],axes=(1,0,2,3))
|
| 49 |
+
CLDICEBC = onp.reshape(CLDICEBC, (lev, time*lat*lon))
|
| 50 |
+
CLDICEBCTEND=(CLDICEBC-CLDICEBP)/DT
|
| 51 |
+
|
| 52 |
+
NN2L_FLWDS = onp.reshape(ds2.variables['NN2L_FLWDS'], (1, time*lat*lon))
|
| 53 |
+
|
| 54 |
+
NN2L_NETSW = onp.reshape(ds2.variables['NN2L_NETSW'], (1, time*lat*lon))
|
| 55 |
+
|
| 56 |
+
NN2L_PRECC = onp.reshape(ds2.variables['NN2L_PRECC'], (1, time*lat*lon))
|
| 57 |
+
|
| 58 |
+
NN2L_PRECSC = onp.reshape(ds2.variables['NN2L_PRECSC'], (1, time*lat*lon))
|
| 59 |
+
|
| 60 |
+
NN2L_SOLL = onp.reshape(ds2.variables['NN2L_SOLL'], (1, time*lat*lon))
|
| 61 |
+
|
| 62 |
+
NN2L_SOLLD = onp.reshape(ds2.variables['NN2L_SOLLD'], (1, time*lat*lon))
|
| 63 |
+
|
| 64 |
+
NN2L_SOLS = onp.reshape(ds2.variables['NN2L_SOLS'], (1, time*lat*lon))
|
| 65 |
+
|
| 66 |
+
NN2L_SOLSD = onp.reshape(ds2.variables['NN2L_SOLSD'], (1, time*lat*lon))
|
| 67 |
+
|
| 68 |
+
outputs = onp.concatenate((TBCTEND,QBCTEND,CLDLIQBCTEND,CLDICEBCTEND,
|
| 69 |
+
NN2L_FLWDS,NN2L_NETSW,NN2L_PRECC,NN2L_PRECSC,
|
| 70 |
+
NN2L_SOLL,NN2L_SOLLD,NN2L_SOLS,NN2L_SOLSD)).T
|
| 71 |
+
return inputs, outputs
|
| 72 |
+
|
| 73 |
+
is_4K = 0
|
| 74 |
+
is_8K = 1
|
| 75 |
+
if is_4K == 1:
|
| 76 |
+
pp = current_dirs_parent+'/07088/tg863871/CESM2_case/CAM5_1024_NN_L26_Feb27_4K/archive/CAM5_1024_NN_L26_Feb27_4K/atm/hist/'
|
| 77 |
+
elif is_8K == 1:
|
| 78 |
+
pp = current_dirs_parent+'/07088/tg863871/CESM2_case/CAM5_1024_NN_L26_Apr26_8K/archive/CAM5_1024_NN_L26_Apr26_8K/atm/hist/'
|
| 79 |
+
|
| 80 |
+
case = 4
|
| 81 |
+
if is_4K == 1:
|
| 82 |
+
if case == 1:
|
| 83 |
+
l_year = ['2003']
|
| 84 |
+
l_month = ['01','03','05','07','08','10','12']
|
| 85 |
+
l_day = [1,7,13,19,25,31]
|
| 86 |
+
l_N = [5,5,5,5,5,0]
|
| 87 |
+
elif case == 2:
|
| 88 |
+
l_year = ['2004']
|
| 89 |
+
l_month = ['01']
|
| 90 |
+
l_day = [1,7,13,19,25,31]
|
| 91 |
+
l_N = [5,5,5,5,5,0]
|
| 92 |
+
elif case == 3:
|
| 93 |
+
l_year = ['2003']
|
| 94 |
+
l_month = ['02','04','06','09','11']
|
| 95 |
+
l_day = [1,7,13,19,25]
|
| 96 |
+
l_N_other = [5,5,5,5,5]
|
| 97 |
+
l_N_02 = [5,5,5,5,3]
|
| 98 |
+
elif case == 4:
|
| 99 |
+
l_year = ['2004']
|
| 100 |
+
l_month = ['02']
|
| 101 |
+
l_day = [1]
|
| 102 |
+
l_N = [2]
|
| 103 |
+
elif is_8K == 1:
|
| 104 |
+
if case == 1:
|
| 105 |
+
l_year = ['2004']
|
| 106 |
+
l_month = ['02']
|
| 107 |
+
l_day = [1,7,13,19,25]
|
| 108 |
+
l_N = [5,5,5,5,3]
|
| 109 |
+
elif case == 2:
|
| 110 |
+
l_year = ['2004']
|
| 111 |
+
l_month = ['03']
|
| 112 |
+
l_day = [1,7,13]
|
| 113 |
+
l_N = [5,5,0]
|
| 114 |
+
elif case == 3:
|
| 115 |
+
l_year = ['2003']
|
| 116 |
+
l_month = ['02','04','06','09','11']
|
| 117 |
+
l_day = [1,7,13,19,25]
|
| 118 |
+
l_N_other = [5,5,5,5,5]
|
| 119 |
+
l_N_02 = [5,5,5,5,3]
|
| 120 |
+
elif case == 4:
|
| 121 |
+
l_year = ['2004']
|
| 122 |
+
l_month = ['01']
|
| 123 |
+
l_day = [1,7,13,19,25,31]
|
| 124 |
+
l_N = [5,5,5,5,5,0]
|
| 125 |
+
elif case == 5:
|
| 126 |
+
l_year = ['2003']
|
| 127 |
+
l_month = ['01','03','05','07','08','10','12']
|
| 128 |
+
l_day = [1,7,13,19,25,31]
|
| 129 |
+
l_N = [5,5,5,5,5,0]
|
| 130 |
+
|
| 131 |
+
for k in range(len(l_year)):
|
| 132 |
+
i_year = l_year[k]
|
| 133 |
+
|
| 134 |
+
for i in range(len(l_month)):
|
| 135 |
+
|
| 136 |
+
i_month = l_month[i]
|
| 137 |
+
|
| 138 |
+
#case 1, 2, 4, 5
|
| 139 |
+
# nothing, l_N and l_day are the same for any i index
|
| 140 |
+
if case == 3:
|
| 141 |
+
if i_month == '02':
|
| 142 |
+
l_N = l_N_02
|
| 143 |
+
else:
|
| 144 |
+
l_N = l_N_other
|
| 145 |
+
|
| 146 |
+
for ii in range(len(l_day)):
|
| 147 |
+
i_day = l_day[ii]
|
| 148 |
+
N_day = l_N[ii]
|
| 149 |
+
|
| 150 |
+
if i_day<10:
|
| 151 |
+
i_day_str = '0'+str(i_day)
|
| 152 |
+
else:
|
| 153 |
+
i_day_str = str(i_day)
|
| 154 |
+
|
| 155 |
+
if is_4K == 1:
|
| 156 |
+
ds0 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 157 |
+
ds1 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 158 |
+
ds2 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 159 |
+
elif is_8K == 1:
|
| 160 |
+
ds0 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 161 |
+
ds1 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 162 |
+
ds2 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 163 |
+
|
| 164 |
+
DT = 30*60
|
| 165 |
+
lat = ds0.dimensions['lat'].size
|
| 166 |
+
time = ds0.dimensions['time'].size
|
| 167 |
+
lon = ds0.dimensions['lon'].size
|
| 168 |
+
lev = ds0.dimensions['lev'].size
|
| 169 |
+
|
| 170 |
+
inputs, outputs = read_data(ds0, ds1, ds2)
|
| 171 |
+
|
| 172 |
+
#due to zero solar insulation remove half of the points
|
| 173 |
+
name_end = ['01800','05400','09000','12600','16200',
|
| 174 |
+
'19800','23400','27000','30600','34200',
|
| 175 |
+
'37800','41400','45000','48600','52200',
|
| 176 |
+
'55800','59400','63000','66600','70200',
|
| 177 |
+
'73800','77400','81000','84600']
|
| 178 |
+
|
| 179 |
+
num_name = len(name_end)
|
| 180 |
+
|
| 181 |
+
for i in range(num_name-1):
|
| 182 |
+
if is_4K == 1:
|
| 183 |
+
ds0 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 184 |
+
ds1 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 185 |
+
ds2 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 186 |
+
elif is_8K == 1:
|
| 187 |
+
ds0 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 188 |
+
ds1 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 189 |
+
ds2 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 190 |
+
|
| 191 |
+
inputs_l, outputs_l = read_data(ds0, ds1, ds2)
|
| 192 |
+
inputs = onp.concatenate((inputs,inputs_l))
|
| 193 |
+
outputs = onp.concatenate((outputs,outputs_l))
|
| 194 |
+
|
| 195 |
+
for j in range(N_day):
|
| 196 |
+
print(j)
|
| 197 |
+
i_day += 1
|
| 198 |
+
if i_day<10:
|
| 199 |
+
i_day_str = '0'+str(i_day)
|
| 200 |
+
else:
|
| 201 |
+
i_day_str = str(i_day)
|
| 202 |
+
for i in range(num_name):
|
| 203 |
+
if is_4K == 1:
|
| 204 |
+
ds0 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 205 |
+
ds1 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 206 |
+
ds2 = nc.Dataset(pp+'CAM5_1024_NN_L26_Feb27_4K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 207 |
+
elif is_8K == 1:
|
| 208 |
+
ds0 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 209 |
+
ds1 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 210 |
+
ds2 = nc.Dataset(pp+'CAM5_1024_NN_L26_Apr26_8K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 211 |
+
|
| 212 |
+
inputs_l, outputs_l = read_data(ds0, ds1, ds2)
|
| 213 |
+
inputs = onp.concatenate((inputs,inputs_l))
|
| 214 |
+
outputs = onp.concatenate((outputs,outputs_l))
|
| 215 |
+
|
| 216 |
+
if i_day<10:
|
| 217 |
+
i_day_str = '0'+str(i_day)
|
| 218 |
+
else:
|
| 219 |
+
i_day_str = str(i_day)
|
| 220 |
+
|
| 221 |
+
if is_4K == 1:
|
| 222 |
+
onp.save('data_CAM5_4K/inputs_'+i_year+'_'+i_month+'_'+i_day_str,inputs)
|
| 223 |
+
onp.save('data_CAM5_4K/outputs_'+i_year+'_'+i_month+'_'+i_day_str,outputs)
|
| 224 |
+
elif is_8K == 1:
|
| 225 |
+
onp.save('data_CAM5_8K/inputs_'+i_year+'_'+i_month+'_'+i_day_str,inputs)
|
| 226 |
+
onp.save('data_CAM5_8K/outputs_'+i_year+'_'+i_month+'_'+i_day_str,outputs)
|
| 227 |
+
|
| 228 |
+
print('h0.'+i_year+'-'+i_month+'-'+i_day_str, ', train data shape: ',inputs.shape, outputs.shape) # (221184, 108) (221184, 112)
|
| 229 |
+
|
0_data_process_SPCAM5.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Mon Apr 3 11:28:31 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
current_dirs_parent = os.path.dirname(os.getcwd())
|
| 11 |
+
current_dirs_parent = os.path.dirname(current_dirs_parent)
|
| 12 |
+
import netCDF4 as nc
|
| 13 |
+
import numpy as onp
|
| 14 |
+
|
| 15 |
+
def read_data(ds0, ds1, ds2):
|
| 16 |
+
|
| 17 |
+
TBP = onp.transpose(ds0.variables['TBP'],axes=(1,0,2,3))
|
| 18 |
+
QBP = onp.transpose(ds0.variables['QBP'],axes=(1,0,2,3))
|
| 19 |
+
CLDLIQBP = onp.transpose(ds0.variables['CLDLIQBP'],axes=(1,0,2,3))
|
| 20 |
+
CLDICEBP = onp.transpose(ds0.variables['CLDICEBP'],axes=(1,0,2,3))
|
| 21 |
+
|
| 22 |
+
TBP = onp.reshape(TBP, (lev, time*lat*lon))
|
| 23 |
+
QBP = onp.reshape(QBP, (lev, time*lat*lon))
|
| 24 |
+
CLDLIQBP = onp.reshape(CLDLIQBP, (lev, time*lat*lon))
|
| 25 |
+
CLDICEBP = onp.reshape(CLDICEBP, (lev, time*lat*lon))
|
| 26 |
+
|
| 27 |
+
PS = onp.reshape(ds0.variables['PS'], (1, time*lat*lon))
|
| 28 |
+
SOLIN = onp.reshape(ds0.variables['SOLIN'], (1, time*lat*lon))
|
| 29 |
+
SHFLX = onp.reshape(ds0.variables['SHFLX'], (1, time*lat*lon))
|
| 30 |
+
LHFLX = onp.reshape(ds0.variables['LHFLX'], (1, time*lat*lon))
|
| 31 |
+
|
| 32 |
+
is_land = onp.reshape(ds0.variables['LANDFRAC'], (1, time*lat*lon)) > onp.reshape(ds0.variables['OCNFRAC'], (1, time*lat*lon))
|
| 33 |
+
|
| 34 |
+
inputs = onp.concatenate((TBP,QBP,CLDLIQBP,CLDICEBP,PS,SOLIN,SHFLX,LHFLX,is_land)).T
|
| 35 |
+
|
| 36 |
+
TBC = onp.transpose(ds1.variables['TBC'],axes=(1,0,2,3))
|
| 37 |
+
TBC = onp.reshape(TBC, (lev, time*lat*lon))
|
| 38 |
+
TBCTEND=(TBC-TBP)/DT
|
| 39 |
+
|
| 40 |
+
QBC = onp.transpose(ds1.variables['QBC'],axes=(1,0,2,3))
|
| 41 |
+
QBC = onp.reshape(QBC, (lev, time*lat*lon))
|
| 42 |
+
QBCTEND=(QBC-QBP)/DT
|
| 43 |
+
|
| 44 |
+
CLDLIQBC = onp.transpose(ds1.variables['CLDLIQBC'],axes=(1,0,2,3))
|
| 45 |
+
CLDLIQBC = onp.reshape(CLDLIQBC, (lev, time*lat*lon))
|
| 46 |
+
CLDLIQBCTEND=(CLDLIQBC-CLDLIQBP)/DT
|
| 47 |
+
|
| 48 |
+
CLDICEBC = onp.transpose(ds1.variables['CLDICEBC'],axes=(1,0,2,3))
|
| 49 |
+
CLDICEBC = onp.reshape(CLDICEBC, (lev, time*lat*lon))
|
| 50 |
+
CLDICEBCTEND=(CLDICEBC-CLDICEBP)/DT
|
| 51 |
+
|
| 52 |
+
NN2L_FLWDS = onp.reshape(ds2.variables['NN2L_FLWDS'], (1, time*lat*lon))
|
| 53 |
+
|
| 54 |
+
NN2L_NETSW = onp.reshape(ds2.variables['NN2L_NETSW'], (1, time*lat*lon))
|
| 55 |
+
|
| 56 |
+
NN2L_PRECC = onp.reshape(ds2.variables['NN2L_PRECC'], (1, time*lat*lon))
|
| 57 |
+
|
| 58 |
+
NN2L_PRECSC = onp.reshape(ds2.variables['NN2L_PRECSC'], (1, time*lat*lon))
|
| 59 |
+
|
| 60 |
+
NN2L_SOLL = onp.reshape(ds2.variables['NN2L_SOLL'], (1, time*lat*lon))
|
| 61 |
+
|
| 62 |
+
NN2L_SOLLD = onp.reshape(ds2.variables['NN2L_SOLLD'], (1, time*lat*lon))
|
| 63 |
+
|
| 64 |
+
NN2L_SOLS = onp.reshape(ds2.variables['NN2L_SOLS'], (1, time*lat*lon))
|
| 65 |
+
|
| 66 |
+
NN2L_SOLSD = onp.reshape(ds2.variables['NN2L_SOLSD'], (1, time*lat*lon))
|
| 67 |
+
|
| 68 |
+
outputs = onp.concatenate((TBCTEND,QBCTEND,CLDLIQBCTEND,CLDICEBCTEND,
|
| 69 |
+
NN2L_FLWDS,NN2L_NETSW,NN2L_PRECC,NN2L_PRECSC,
|
| 70 |
+
NN2L_SOLL,NN2L_SOLLD,NN2L_SOLS,NN2L_SOLSD)).T
|
| 71 |
+
return inputs, outputs
|
| 72 |
+
|
| 73 |
+
is_4K = 0
|
| 74 |
+
is_hist = 1
|
| 75 |
+
if is_4K == 1:
|
| 76 |
+
pp = current_dirs_parent+'/07088/tg863871/CESM2_case/SPCAM_NN_4K/archive/SPCAM_NN_4K/atm/hist/'
|
| 77 |
+
elif is_hist == 1:
|
| 78 |
+
pp = current_dirs_parent+'/07088/tg863871/CESM2_case/SPCAM_NN_v2/archive/SPCAM_NN_v2/atm/hist/'
|
| 79 |
+
|
| 80 |
+
case = 4
|
| 81 |
+
|
| 82 |
+
if is_4K == 1:
|
| 83 |
+
if case == 1:
|
| 84 |
+
l_year = ['2003']
|
| 85 |
+
l_month = ['01','03','05','07','08','10','12']
|
| 86 |
+
l_day = [1,7,13,19,25,31]
|
| 87 |
+
l_N = [5,5,5,5,5,0]
|
| 88 |
+
elif case == 2:
|
| 89 |
+
l_year = ['2004']
|
| 90 |
+
l_month = ['01']
|
| 91 |
+
l_day = [1,7,13,19,25,31]
|
| 92 |
+
l_N = [5,5,5,5,5,0]
|
| 93 |
+
elif case == 3:
|
| 94 |
+
l_year = ['2003']
|
| 95 |
+
l_month = ['02','04','06','09','11']
|
| 96 |
+
l_day = [1,7,13,19,25]
|
| 97 |
+
l_N_other = [5,5,5,5,5]
|
| 98 |
+
l_N_02 = [5,5,5,5,3]
|
| 99 |
+
elif case == 4:
|
| 100 |
+
l_year = ['2004']
|
| 101 |
+
l_month = ['02']
|
| 102 |
+
l_day = [1]
|
| 103 |
+
l_N = [2]
|
| 104 |
+
elif is_hist == 1:
|
| 105 |
+
if case == 1:
|
| 106 |
+
l_year = ['2003']
|
| 107 |
+
l_month = ['01','03','05','07','08','10','12']
|
| 108 |
+
l_day = [1,7,13,19,25,31]
|
| 109 |
+
l_N = [5,5,5,5,5,0]
|
| 110 |
+
elif case == 2:
|
| 111 |
+
l_year = ['2004']
|
| 112 |
+
l_month = ['01','03','05','07','08']
|
| 113 |
+
l_day_other = [1,7,13,19,25,31]
|
| 114 |
+
l_N_other = [5,5,5,5,5,0]
|
| 115 |
+
l_day_08 = [1]
|
| 116 |
+
l_N_08 = [2]
|
| 117 |
+
elif case == 3:
|
| 118 |
+
l_year = ['2003']
|
| 119 |
+
l_month = ['02','04','06','09','11']
|
| 120 |
+
l_day = [1,7,13,19,25]
|
| 121 |
+
l_N_other = [5,5,5,5,5]
|
| 122 |
+
l_N_02 = [5,5,5,5,3]
|
| 123 |
+
elif case == 4:
|
| 124 |
+
l_year = ['2004']
|
| 125 |
+
l_month = ['02','04','06']
|
| 126 |
+
l_day = [1,7,13,19,25]
|
| 127 |
+
l_N_04_06 = [5,5,5,5,5]
|
| 128 |
+
l_N_02 = [5,5,5,5,3]
|
| 129 |
+
|
| 130 |
+
for k in range(len(l_year)):
|
| 131 |
+
i_year = l_year[k]
|
| 132 |
+
|
| 133 |
+
for i in range(len(l_month)):
|
| 134 |
+
|
| 135 |
+
i_month = l_month[i]
|
| 136 |
+
|
| 137 |
+
if is_4K == 1:
|
| 138 |
+
#case 1, 2, 4
|
| 139 |
+
# nothing, l_N and l_day are the same for any i index
|
| 140 |
+
if case == 3:
|
| 141 |
+
if i_month == '02':
|
| 142 |
+
l_N = l_N_02
|
| 143 |
+
else:
|
| 144 |
+
l_N = l_N_other
|
| 145 |
+
elif is_hist == 1:
|
| 146 |
+
#case 1
|
| 147 |
+
# nothing, l_N and l_day are the same for any i index
|
| 148 |
+
if case == 2:
|
| 149 |
+
if i_month == '08':
|
| 150 |
+
l_N = l_N_08
|
| 151 |
+
l_day = l_day_08
|
| 152 |
+
else:
|
| 153 |
+
l_N = l_N_other
|
| 154 |
+
l_day = l_day_other
|
| 155 |
+
elif case == 3:
|
| 156 |
+
if i_month == '02':
|
| 157 |
+
l_N = l_N_02
|
| 158 |
+
else:
|
| 159 |
+
l_N = l_N_other
|
| 160 |
+
elif case == 4:
|
| 161 |
+
if i_month == '02':
|
| 162 |
+
l_N = l_N_02
|
| 163 |
+
else:
|
| 164 |
+
l_N = l_N_04_06
|
| 165 |
+
for ii in range(len(l_day)):
|
| 166 |
+
i_day = l_day[ii]
|
| 167 |
+
N_day = l_N[ii]
|
| 168 |
+
|
| 169 |
+
if i_day<10:
|
| 170 |
+
i_day_str = '0'+str(i_day)
|
| 171 |
+
else:
|
| 172 |
+
i_day_str = str(i_day)
|
| 173 |
+
|
| 174 |
+
if is_4K == 1:
|
| 175 |
+
ds0 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 176 |
+
ds1 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 177 |
+
ds2 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 178 |
+
elif is_hist == 1:
|
| 179 |
+
ds0 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 180 |
+
ds1 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 181 |
+
ds2 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-01800.nc')
|
| 182 |
+
DT = 30*60
|
| 183 |
+
lat = ds0.dimensions['lat'].size
|
| 184 |
+
time = ds0.dimensions['time'].size
|
| 185 |
+
lon = ds0.dimensions['lon'].size
|
| 186 |
+
lev = ds0.dimensions['lev'].size
|
| 187 |
+
|
| 188 |
+
inputs, outputs = read_data(ds0, ds1, ds2)
|
| 189 |
+
|
| 190 |
+
#due to zero solar insulation remove half of the points
|
| 191 |
+
name_end = ['01800','05400','09000','12600','16200',
|
| 192 |
+
'19800','23400','27000','30600','34200',
|
| 193 |
+
'37800','41400','45000','48600','52200',
|
| 194 |
+
'55800','59400','63000','66600','70200',
|
| 195 |
+
'73800','77400','81000','84600']
|
| 196 |
+
|
| 197 |
+
num_name = len(name_end)
|
| 198 |
+
|
| 199 |
+
for i in range(num_name-1):
|
| 200 |
+
if is_4K == 1:
|
| 201 |
+
ds0 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 202 |
+
ds1 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 203 |
+
ds2 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 204 |
+
elif is_hist == 1:
|
| 205 |
+
ds0 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 206 |
+
ds1 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 207 |
+
ds2 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i+1]+'.nc')
|
| 208 |
+
inputs_l, outputs_l = read_data(ds0, ds1, ds2)
|
| 209 |
+
inputs = onp.concatenate((inputs,inputs_l))
|
| 210 |
+
outputs = onp.concatenate((outputs,outputs_l))
|
| 211 |
+
|
| 212 |
+
for j in range(N_day):
|
| 213 |
+
print(j)
|
| 214 |
+
i_day += 1
|
| 215 |
+
if i_day<10:
|
| 216 |
+
i_day_str = '0'+str(i_day)
|
| 217 |
+
else:
|
| 218 |
+
i_day_str = str(i_day)
|
| 219 |
+
for i in range(num_name):
|
| 220 |
+
if is_4K == 1:
|
| 221 |
+
ds0 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 222 |
+
ds1 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 223 |
+
ds2 = nc.Dataset(pp+'SPCAM_NN_4K.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 224 |
+
elif is_hist == 1:
|
| 225 |
+
ds0 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h0.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 226 |
+
ds1 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h1.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 227 |
+
ds2 = nc.Dataset(pp+'SPCAM_NN_v2.cam.h2.'+i_year+'-'+i_month+'-'+i_day_str+'-'+name_end[i]+'.nc')
|
| 228 |
+
|
| 229 |
+
inputs_l, outputs_l = read_data(ds0, ds1, ds2)
|
| 230 |
+
inputs = onp.concatenate((inputs,inputs_l))
|
| 231 |
+
outputs = onp.concatenate((outputs,outputs_l))
|
| 232 |
+
|
| 233 |
+
if i_day<10:
|
| 234 |
+
i_day_str = '0'+str(i_day)
|
| 235 |
+
else:
|
| 236 |
+
i_day_str = str(i_day)
|
| 237 |
+
|
| 238 |
+
if is_4K == 1:
|
| 239 |
+
onp.save('data_SPCAM5_4K/inputs_'+i_year+'_'+i_month+'_'+i_day_str,inputs)
|
| 240 |
+
onp.save('data_SPCAM5_4K/outputs_'+i_year+'_'+i_month+'_'+i_day_str,outputs)
|
| 241 |
+
elif is_hist == 1:
|
| 242 |
+
onp.save('data_SPCAM5_hist/inputs_'+i_year+'_'+i_month+'_'+i_day_str,inputs)
|
| 243 |
+
onp.save('data_SPCAM5_hist/outputs_'+i_year+'_'+i_month+'_'+i_day_str,outputs)
|
| 244 |
+
|
| 245 |
+
print('h0.'+i_year+'-'+i_month+'-'+i_day_str, ', train data shape: ',inputs.shape, outputs.shape) # (221184, 108) (221184, 112)
|
| 246 |
+
|
1_create_train_test.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed Apr 12 12:04:50 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
CAM_train_input = 0
|
| 10 |
+
CAM_train_output = 0
|
| 11 |
+
CAM_4K_input = 0
|
| 12 |
+
CAM_4K_output = 0
|
| 13 |
+
|
| 14 |
+
SPCAM_train_input = 0
|
| 15 |
+
SPCAM_train_output = 0
|
| 16 |
+
SPCAM_test_input = 0
|
| 17 |
+
SPCAM_test_output = 0
|
| 18 |
+
|
| 19 |
+
is_output_heat = 1
|
| 20 |
+
|
| 21 |
+
if SPCAM_train_input == 1 or SPCAM_train_output == 1:
|
| 22 |
+
pp_SPCAM = 'data_SPCAM5_hist/'
|
| 23 |
+
if SPCAM_test_input == 1 or SPCAM_test_output == 1:
|
| 24 |
+
pp_SPCAM ='data_SPCAM5_4K/'
|
| 25 |
+
if CAM_train_input == 1 or CAM_train_output == 1:
|
| 26 |
+
pp_CAM = 'data_CAM5_8K/'
|
| 27 |
+
if CAM_4K_input == 1 or CAM_4K_output == 1:
|
| 28 |
+
pp_CAM = 'data_CAM5_4K/'
|
| 29 |
+
|
| 30 |
+
import numpy as np
|
| 31 |
+
|
| 32 |
+
train_CAM =['2003_02_06','2003_02_12','2003_02_18','2003_02_24','2003_02_28',
|
| 33 |
+
'2003_03_06','2003_03_12','2003_03_18','2003_03_24','2003_03_30','2003_03_31',
|
| 34 |
+
'2003_04_06','2003_04_12','2003_04_18','2003_04_24','2003_04_30',
|
| 35 |
+
'2003_05_06','2003_05_12','2003_05_18','2003_05_24','2003_05_30','2003_05_31',
|
| 36 |
+
'2003_06_06','2003_06_12','2003_06_18','2003_06_24','2003_06_30',
|
| 37 |
+
'2003_07_06','2003_07_12','2003_07_18','2003_07_24','2003_07_30','2003_07_31',
|
| 38 |
+
'2003_08_06','2003_08_12','2003_08_18','2003_08_24','2003_08_30','2003_08_31',
|
| 39 |
+
'2003_09_06','2003_09_12','2003_09_18','2003_09_24','2003_09_30',
|
| 40 |
+
'2003_10_06','2003_10_12','2003_10_18','2003_10_24','2003_10_30','2003_10_31',
|
| 41 |
+
'2003_11_06','2003_11_12','2003_11_18','2003_11_24','2003_11_30',
|
| 42 |
+
'2003_12_06','2003_12_12','2003_12_18','2003_12_24','2003_12_30','2003_12_31',
|
| 43 |
+
'2004_01_06','2004_01_12','2004_01_18','2004_01_24','2004_01_30','2004_01_31']
|
| 44 |
+
|
| 45 |
+
train_SPCAM =['2003_02_06','2003_02_12','2003_02_18','2003_02_24','2003_02_28',
|
| 46 |
+
'2003_03_06','2003_03_12','2003_03_18','2003_03_24','2003_03_30','2003_03_31',
|
| 47 |
+
'2003_04_06','2003_04_12','2003_04_18','2003_04_24','2003_04_30']
|
| 48 |
+
|
| 49 |
+
test_SPCAM =['2003_02_06','2003_02_12','2003_02_18','2003_02_24','2003_02_28',
|
| 50 |
+
'2003_03_06','2003_03_12','2003_03_18','2003_03_24','2003_03_30','2003_03_31',
|
| 51 |
+
'2003_04_06','2003_04_12','2003_04_18','2003_04_24','2003_04_30',
|
| 52 |
+
'2003_05_06','2003_05_12','2003_05_18','2003_05_24','2003_05_30','2003_05_31',
|
| 53 |
+
'2003_06_06','2003_06_12','2003_06_18','2003_06_24','2003_06_30',
|
| 54 |
+
'2003_07_06','2003_07_12','2003_07_18','2003_07_24','2003_07_30','2003_07_31',
|
| 55 |
+
'2003_08_06','2003_08_12','2003_08_18','2003_08_24','2003_08_30','2003_08_31',
|
| 56 |
+
'2003_09_06','2003_09_12','2003_09_18','2003_09_24','2003_09_30',
|
| 57 |
+
'2003_10_06','2003_10_12','2003_10_18','2003_10_24','2003_10_30','2003_10_31',
|
| 58 |
+
'2003_11_06','2003_11_12','2003_11_18','2003_11_24','2003_11_30',
|
| 59 |
+
'2003_12_06','2003_12_12','2003_12_18','2003_12_24','2003_12_30','2003_12_31',
|
| 60 |
+
'2004_01_06','2004_01_12','2004_01_18','2004_01_24','2004_01_30','2004_01_31']
|
| 61 |
+
|
| 62 |
+
import gc
|
| 63 |
+
|
| 64 |
+
ind_input = np.concatenate( (np.arange(52),np.array([104,105,106,107])) )
|
| 65 |
+
if is_output_heat == 1:
|
| 66 |
+
ind_output = np.arange(26) # heat tend
|
| 67 |
+
else:
|
| 68 |
+
ind_output = 26+np.arange(26) # moist tend
|
| 69 |
+
|
| 70 |
+
if CAM_train_input == 1 or CAM_4K_input == 1:
|
| 71 |
+
train_CAM_in = np.load(pp_CAM+'inputs_'+train_CAM[0]+'.npy')[:,ind_input]
|
| 72 |
+
gc.collect()
|
| 73 |
+
for i in range(len(train_CAM)-1):
|
| 74 |
+
print(train_CAM[i+1])
|
| 75 |
+
train_CAM_in = np.concatenate((train_CAM_in,
|
| 76 |
+
np.load(pp_CAM+'inputs_'+train_CAM[i+1]+'.npy')[:,ind_input]),axis=0)
|
| 77 |
+
gc.collect()
|
| 78 |
+
np.save(pp_CAM+'all_inputs.npy',train_CAM_in)
|
| 79 |
+
print('Final data shape: ', train_CAM_in.shape)
|
| 80 |
+
|
| 81 |
+
if CAM_train_output == 1 or CAM_4K_output == 1:
|
| 82 |
+
train_CAM_out = np.load(pp_CAM+'outputs_'+train_CAM[0]+'.npy')[:,ind_output]
|
| 83 |
+
gc.collect()
|
| 84 |
+
for i in range(len(train_CAM)-1):
|
| 85 |
+
print(train_CAM[i+1])
|
| 86 |
+
train_CAM_out = np.concatenate((train_CAM_out,
|
| 87 |
+
np.load(pp_CAM+'outputs_'+train_CAM[i+1]+'.npy')[:,ind_output]),axis=0)
|
| 88 |
+
gc.collect()
|
| 89 |
+
|
| 90 |
+
if is_output_heat == 1:
|
| 91 |
+
np.save(pp_CAM+'all_outputs_heat.npy',train_CAM_out)
|
| 92 |
+
else:
|
| 93 |
+
np.save(pp_CAM+'all_outputs_moist.npy',train_CAM_out)
|
| 94 |
+
print('Final data shape: ', train_CAM_out.shape)
|
| 95 |
+
|
| 96 |
+
if SPCAM_train_input == 1:
|
| 97 |
+
train_SPCAM_in = np.load(pp_SPCAM+'inputs_'+train_SPCAM[0]+'.npy')[:,ind_input]
|
| 98 |
+
gc.collect()
|
| 99 |
+
for i in range(len(train_SPCAM)-1):
|
| 100 |
+
print(train_SPCAM[i+1])
|
| 101 |
+
train_SPCAM_in = np.concatenate((train_SPCAM_in,
|
| 102 |
+
np.load(pp_SPCAM+'inputs_'+train_SPCAM[i+1]+'.npy')[:,ind_input]),axis=0)
|
| 103 |
+
gc.collect()
|
| 104 |
+
np.save(pp_SPCAM+'three_month_inputs.npy',train_SPCAM_in)
|
| 105 |
+
print('Final data shape: ', train_SPCAM_in.shape)
|
| 106 |
+
|
| 107 |
+
if SPCAM_train_output == 1:
|
| 108 |
+
train_SPCAM_out = np.load(pp_SPCAM+'outputs_'+train_SPCAM[0]+'.npy')[:,ind_output]
|
| 109 |
+
gc.collect()
|
| 110 |
+
for i in range(len(train_SPCAM)-1):
|
| 111 |
+
print(train_SPCAM[i+1])
|
| 112 |
+
train_SPCAM_out = np.concatenate((train_SPCAM_out,
|
| 113 |
+
np.load(pp_SPCAM+'outputs_'+train_SPCAM[i+1]+'.npy')[:,ind_output]),axis=0)
|
| 114 |
+
gc.collect()
|
| 115 |
+
if is_output_heat == 1:
|
| 116 |
+
np.save(pp_SPCAM+'three_month_outputs_heat.npy',train_SPCAM_out)
|
| 117 |
+
else:
|
| 118 |
+
np.save(pp_SPCAM+'three_month_outputs_moist.npy',train_SPCAM_out)
|
| 119 |
+
print('Final data shape: ', train_SPCAM_out.shape)
|
| 120 |
+
|
| 121 |
+
if SPCAM_test_input == 1:
|
| 122 |
+
test_SPCAM_in = np.load(pp_SPCAM+'inputs_'+test_SPCAM[0]+'.npy')[:,ind_input]
|
| 123 |
+
gc.collect()
|
| 124 |
+
for i in range(len(test_SPCAM)-1):
|
| 125 |
+
print(test_SPCAM[i+1])
|
| 126 |
+
test_SPCAM_in = np.concatenate((test_SPCAM_in,
|
| 127 |
+
np.load(pp_SPCAM+'inputs_'+test_SPCAM[i+1]+'.npy')[:,ind_input]),axis=0)
|
| 128 |
+
gc.collect()
|
| 129 |
+
np.save(pp_SPCAM+'all_inputs.npy',test_SPCAM_in)
|
| 130 |
+
print('Final data shape: ', test_SPCAM_in.shape)
|
| 131 |
+
|
| 132 |
+
if SPCAM_test_output == 1:
|
| 133 |
+
test_SPCAM_out = np.load(pp_SPCAM+'outputs_'+test_SPCAM[0]+'.npy')[:,ind_output]
|
| 134 |
+
gc.collect()
|
| 135 |
+
for i in range(len(test_SPCAM)-1):
|
| 136 |
+
print(test_SPCAM[i+1])
|
| 137 |
+
test_SPCAM_out = np.concatenate((test_SPCAM_out,
|
| 138 |
+
np.load(pp_SPCAM+'outputs_'+test_SPCAM[i+1]+'.npy')[:,ind_output]),axis=0)
|
| 139 |
+
gc.collect()
|
| 140 |
+
if is_output_heat == 1:
|
| 141 |
+
np.save(pp_SPCAM+'all_outputs_heat.npy',test_SPCAM_out)
|
| 142 |
+
else:
|
| 143 |
+
np.save(pp_SPCAM+'all_outputs_moist.npy',test_SPCAM_out)
|
| 144 |
+
print('Final data shape: ', test_SPCAM_out.shape)
|
2_candle_plots_data_distr.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Tue Apr 18 12:31:04 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import matplotlib as mpl
|
| 14 |
+
|
| 15 |
+
def figsize(scale, nplots = 1):
|
| 16 |
+
fig_width_pt = 390.0
|
| 17 |
+
inches_per_pt = 1.0/72.27 # Convert pt to inch
|
| 18 |
+
golden_mean = (np.sqrt(5.0)-1.0)/2.0 # Aesthetic ratio (you could change this)
|
| 19 |
+
fig_width = fig_width_pt*inches_per_pt*scale # width in inches
|
| 20 |
+
fig_height = nplots*fig_width*golden_mean # height in inches
|
| 21 |
+
fig_size = [fig_width,fig_height]
|
| 22 |
+
return fig_size
|
| 23 |
+
|
| 24 |
+
pgf_with_latex = {
|
| 25 |
+
"font.monospace": [],
|
| 26 |
+
"axes.labelsize": 32,
|
| 27 |
+
"axes.titlesize": 32,
|
| 28 |
+
"axes.linewidth": 3,
|
| 29 |
+
"font.size": 32,
|
| 30 |
+
"lines.linewidth": 3,
|
| 31 |
+
"legend.fontsize": 32,
|
| 32 |
+
"xtick.labelsize": 32,
|
| 33 |
+
"ytick.labelsize": 32,
|
| 34 |
+
"figure.figsize": figsize(1.0)}
|
| 35 |
+
mpl.rcParams.update(pgf_with_latex)
|
| 36 |
+
|
| 37 |
+
import matplotlib.pyplot as plt
|
| 38 |
+
|
| 39 |
+
plt.ticklabel_format(axis='both', style='sci', scilimits=(0,0))
|
| 40 |
+
|
| 41 |
+
def newfig(width, nplots = 1):
|
| 42 |
+
fig = plt.figure(figsize=figsize(width, nplots))
|
| 43 |
+
ax = fig.add_subplot(111)
|
| 44 |
+
return fig, ax
|
| 45 |
+
|
| 46 |
+
def savefig(filename, crop = True):
|
| 47 |
+
if crop == True:
|
| 48 |
+
plt.savefig('{}.png'.format(filename), bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 49 |
+
else:
|
| 50 |
+
plt.savefig('{}.png'.format(filename), dpi = 300)
|
| 51 |
+
|
| 52 |
+
plt.close('all')
|
| 53 |
+
|
| 54 |
+
is_5_pr_lvls_heat_tend_and_spec_hum = 1 # to plot 5 pressure levels for heat tendency and specific humidity
|
| 55 |
+
is_1st_lvl_SS_moist_tend = 1 # to plot highest pressure level (lowest altitude) for moist tendency
|
| 56 |
+
|
| 57 |
+
if 1==1:
|
| 58 |
+
|
| 59 |
+
with_fliers = False
|
| 60 |
+
print('loading data')
|
| 61 |
+
|
| 62 |
+
CAM5_4K = np.load('data_CAM5_4K/all_outputs_moist.npy')
|
| 63 |
+
CAM5_8K = np.load('data_CAM5_8K/all_outputs_moist.npy')
|
| 64 |
+
SPCAM5_hist = np.load('data_SPCAM5_hist/three_month_outputs_moist.npy')
|
| 65 |
+
SPCAM5_4K = np.load('data_SPCAM5_4K/all_outputs_moist.npy')
|
| 66 |
+
|
| 67 |
+
name = ['958 hPa']
|
| 68 |
+
|
| 69 |
+
CAM5_4K = np.array(CAM5_4K,dtype=np.float64)
|
| 70 |
+
CAM5_8K = np.array(CAM5_8K,dtype=np.float64)
|
| 71 |
+
SPCAM5_hist = np.array(SPCAM5_hist,dtype=np.float64)
|
| 72 |
+
SPCAM5_4K = np.array(SPCAM5_4K,dtype=np.float64)
|
| 73 |
+
|
| 74 |
+
print('data loaded, making candle plots')
|
| 75 |
+
|
| 76 |
+
Data_CAM5_4K = [CAM5_4K[:,25]]
|
| 77 |
+
Data_CAM5_8K = [CAM5_8K[:,25]]
|
| 78 |
+
Data_SPCAM5_hist = [SPCAM5_hist[:,25]]
|
| 79 |
+
Data_SPCAM5_4K = [SPCAM5_4K[:,25]]
|
| 80 |
+
|
| 81 |
+
fig = plt.figure()
|
| 82 |
+
fig.set_size_inches(8, 15)
|
| 83 |
+
|
| 84 |
+
for j in range(1):
|
| 85 |
+
ax = plt.subplot(1, 1, j+1)
|
| 86 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 87 |
+
bp1 = ax.boxplot([Data_SPCAM5_hist[j]], positions=[1], patch_artist=True, notch=True, boxprops=dict(facecolor="red"), showfliers=with_fliers)
|
| 88 |
+
bp2 = ax.boxplot([Data_SPCAM5_4K[j]], positions=[1.5], patch_artist=True, notch=True, boxprops=dict(facecolor="orange"), showfliers=with_fliers)
|
| 89 |
+
bp3 = ax.boxplot([Data_CAM5_4K[j]], positions=[2], patch_artist=True, notch=True, boxprops=dict(facecolor="blue"), showfliers=with_fliers)
|
| 90 |
+
bp4 = ax.boxplot([Data_CAM5_8K[j]], positions=[2.5], patch_artist=True, notch=True, boxprops=dict(facecolor="pink"), showfliers=with_fliers)
|
| 91 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 92 |
+
ax.set_xticklabels([])
|
| 93 |
+
ax.set_xticks([])
|
| 94 |
+
if j == 0:
|
| 95 |
+
ax.legend([bp1["boxes"][0], bp2["boxes"][0], bp3["boxes"][0], bp4["boxes"][0]],
|
| 96 |
+
['SPCAM5 hist 3 m. (HF tr.)', 'SPCAM5 +4K 1 y. (HF ts.)', 'CAM5 +4K 1 y.', 'CAM5 +8K 1 y. (LF tr.)'], ncol=1, loc='upper center', bbox_to_anchor=[0.5, 1.3])#bbox_to_anchor=(2,1.2))#2.95, 1.5))
|
| 97 |
+
savefig('candle_plots_1st_lvl_SS_moist_tend', True)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
if is_5_pr_lvls_heat_tend_and_spec_hum == 1:
|
| 101 |
+
|
| 102 |
+
with_fliers = False
|
| 103 |
+
print('loading data')
|
| 104 |
+
|
| 105 |
+
CAM5_4K_v1 = np.load('data_CAM5_4K/all_outputs_heat.npy')
|
| 106 |
+
CAM5_8K_v1 = np.load('data_CAM5_8K/all_outputs_heat.npy')
|
| 107 |
+
SPCAM5_hist_v1 = np.load('data_SPCAM5_hist/three_month_outputs_heat.npy')
|
| 108 |
+
|
| 109 |
+
CAM5_4K_v2 = np.load('data_CAM5_4K/all_inputs.npy')[:,26:26*2]
|
| 110 |
+
CAM5_8K_v2 = np.load('data_CAM5_8K/all_inputs.npy')[:,26:26*2]
|
| 111 |
+
SPCAM5_hist_v2 = np.load('data_SPCAM5_hist/three_month_inputs.npy')[:,26:26*2]
|
| 112 |
+
|
| 113 |
+
name = ['137 hPa', '259 hPa', '494 hPa', '761 hPa', '958 hPa']
|
| 114 |
+
|
| 115 |
+
name2 = ['3.5', '7.4', '14', '24', '37', '53', '70', '85', '100', '117',
|
| 116 |
+
'137', '160', '188', '221', '259', '305', '358', '420', '494',
|
| 117 |
+
'581', '673', '761', '837', '897', '937', '958']
|
| 118 |
+
|
| 119 |
+
CAM5_4K_v1 = np.array(CAM5_4K_v1,dtype=np.float64)
|
| 120 |
+
CAM5_8K_v1 = np.array(CAM5_8K_v1,dtype=np.float64)
|
| 121 |
+
SPCAM5_hist_v1 = np.array(SPCAM5_hist_v1,dtype=np.float64)
|
| 122 |
+
|
| 123 |
+
CAM5_4K_v2 = np.array(CAM5_4K_v2,dtype=np.float64)
|
| 124 |
+
CAM5_8K_v2 = np.array(CAM5_8K_v2,dtype=np.float64)
|
| 125 |
+
SPCAM5_hist_v2 = np.array(SPCAM5_hist_v2,dtype=np.float64)
|
| 126 |
+
|
| 127 |
+
print('data loaded, making candle plots')
|
| 128 |
+
|
| 129 |
+
Data_CAM5_4K_v1 = [CAM5_4K_v1[:,10],CAM5_4K_v1[:,14],CAM5_4K_v1[:,18],CAM5_4K_v1[:,21],CAM5_4K_v1[:,25]]
|
| 130 |
+
Data_CAM5_8K_v1 = [CAM5_8K_v1[:,10],CAM5_8K_v1[:,14],CAM5_8K_v1[:,18],CAM5_8K_v1[:,21],CAM5_8K_v1[:,25]]
|
| 131 |
+
Data_SPCAM5_hist_v1 = [SPCAM5_hist_v1[:,10],SPCAM5_hist_v1[:,14],SPCAM5_hist_v1[:,18],SPCAM5_hist_v1[:,21],SPCAM5_hist_v1[:,25]]
|
| 132 |
+
|
| 133 |
+
Data_CAM5_4K_v2 = [CAM5_4K_v2[:,10],CAM5_4K_v2[:,14],CAM5_4K_v2[:,18],CAM5_4K_v2[:,21],CAM5_4K_v2[:,25]]
|
| 134 |
+
Data_CAM5_8K_v2 = [CAM5_8K_v2[:,10],CAM5_8K_v2[:,14],CAM5_8K_v2[:,18],CAM5_8K_v2[:,21],CAM5_8K_v2[:,25]]
|
| 135 |
+
Data_SPCAM5_hist_v2 = [SPCAM5_hist_v2[:,10],SPCAM5_hist_v2[:,14],SPCAM5_hist_v2[:,18],SPCAM5_hist_v2[:,21],SPCAM5_hist_v2[:,25]]
|
| 136 |
+
|
| 137 |
+
fig = plt.figure()
|
| 138 |
+
fig.set_size_inches(32, 18)
|
| 139 |
+
|
| 140 |
+
for j in range(5):
|
| 141 |
+
ax = plt.subplot(2, 5, j+1)
|
| 142 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 143 |
+
bp1 = ax.boxplot([Data_SPCAM5_hist_v1[j]], positions=[1], patch_artist=True, notch=True, boxprops=dict(facecolor="red"), showfliers=with_fliers)
|
| 144 |
+
bp2 = ax.boxplot([Data_CAM5_4K_v1[j]], positions=[1.5], patch_artist=True, notch=True, boxprops=dict(facecolor="blue"), showfliers=with_fliers)
|
| 145 |
+
bp3 = ax.boxplot([Data_CAM5_8K_v1[j]], positions=[2], patch_artist=True, notch=True, boxprops=dict(facecolor="pink"), showfliers=with_fliers)
|
| 146 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 147 |
+
|
| 148 |
+
ax.set_xticklabels([])
|
| 149 |
+
ax.set_xticks([])
|
| 150 |
+
ax.set_xlabel(name[j])
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
if j == 0:
|
| 154 |
+
ax.set_ylabel('Heat tendency (K/s)')
|
| 155 |
+
|
| 156 |
+
if j == 2:
|
| 157 |
+
ax.legend([bp1["boxes"][0], bp2["boxes"][0], bp3["boxes"][0]],
|
| 158 |
+
['SPCAM5 hist 3 m. (HF tr.)', 'CAM5 +4K 1 y.', 'CAM5 +8K 1 y.'], ncol=3, loc='upper center', bbox_to_anchor=[0.5, 1.25])#bbox_to_anchor=(2,1.2))#2.95, 1.5))
|
| 159 |
+
for j in range(5):
|
| 160 |
+
ax = plt.subplot(2, 5, 5+j+1)
|
| 161 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 162 |
+
bp1 = ax.boxplot([Data_SPCAM5_hist_v2[j]], positions=[1], patch_artist=True, notch=True, boxprops=dict(facecolor="red"), showfliers=with_fliers)
|
| 163 |
+
bp2 = ax.boxplot([Data_CAM5_4K_v2[j]], positions=[1.5], patch_artist=True, notch=True, boxprops=dict(facecolor="blue"), showfliers=with_fliers)
|
| 164 |
+
bp3 = ax.boxplot([Data_CAM5_8K_v2[j]], positions=[2], patch_artist=True, notch=True, boxprops=dict(facecolor="pink"), showfliers=with_fliers)
|
| 165 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 166 |
+
|
| 167 |
+
ax.set_xticklabels([])
|
| 168 |
+
ax.set_xticks([])
|
| 169 |
+
ax.set_xlabel(name[j])
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
if j == 0:
|
| 173 |
+
ax.set_ylabel('Specific humidity (kg/kg)')
|
| 174 |
+
|
| 175 |
+
savefig('candle_plots_5_pr_lvls_heat_tend_and_spec_hum', True)
|
2_norm.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed Apr 19 23:40:45 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
is_input = 0 # 0 or 1
|
| 12 |
+
case_var = 'moist' # 'moist' or 'heat' if is_input == 0
|
| 13 |
+
sim = 'CAM' # 'CAM' or 'SPCAM'
|
| 14 |
+
|
| 15 |
+
if sim == 'CAM':
|
| 16 |
+
if is_input == 1:
|
| 17 |
+
X = np.load('data_CAM5_8K/all_inputs.npy')
|
| 18 |
+
X = np.array(X,dtype=np.float64)
|
| 19 |
+
|
| 20 |
+
mu_X_CAM5, sigma_X_CAM5 = [], []
|
| 21 |
+
# we do not use the vectorial format of computing mean and std on purpose
|
| 22 |
+
# in order to avoid the risk of precision error given the dataset size
|
| 23 |
+
for i in range(X.shape[1]):
|
| 24 |
+
mu_X_CAM5.append(np.mean(X[:,i]))
|
| 25 |
+
sigma_X_CAM5.append(np.std(X[:,i]))
|
| 26 |
+
mu_X_CAM5 = np.array(np.array(mu_X_CAM5),dtype=np.float32)
|
| 27 |
+
sigma_X_CAM5 = np.array(np.array(sigma_X_CAM5),dtype=np.float32)
|
| 28 |
+
np.save('norm/mu_X_CAM5.npy',mu_X_CAM5)
|
| 29 |
+
np.save('norm/sigma_X_CAM5.npy',sigma_X_CAM5)
|
| 30 |
+
else:
|
| 31 |
+
if case_var == 'moist':
|
| 32 |
+
X = np.load('data_CAM5_8K/all_outputs_moist.npy')
|
| 33 |
+
X = np.array(X,dtype=np.float64)
|
| 34 |
+
|
| 35 |
+
mu_y_moist_CAM5, sigma_y_moist_CAM5 = [], []
|
| 36 |
+
for i in range(X.shape[1]):
|
| 37 |
+
mu_y_moist_CAM5.append(np.mean(X[:,i]))
|
| 38 |
+
sigma_y_moist_CAM5.append(np.std(X[:,i]))
|
| 39 |
+
mu_y_moist_CAM5 = np.array(np.array(mu_y_moist_CAM5),dtype=np.float32)
|
| 40 |
+
sigma_y_moist_CAM5 = np.array(np.array(sigma_y_moist_CAM5),dtype=np.float32)
|
| 41 |
+
np.save('norm/mu_y_moist_CAM5.npy',mu_y_moist_CAM5)
|
| 42 |
+
np.save('norm/sigma_y_moist_CAM5.npy',sigma_y_moist_CAM5)
|
| 43 |
+
else:
|
| 44 |
+
X = np.load('data_CAM5_8K/all_outputs_heat.npy')
|
| 45 |
+
X = np.array(X,dtype=np.float64)
|
| 46 |
+
|
| 47 |
+
mu_y_heat_CAM5, sigma_y_heat_CAM5 = [], []
|
| 48 |
+
for i in range(X.shape[1]):
|
| 49 |
+
mu_y_heat_CAM5.append(np.mean(X[:,i]))
|
| 50 |
+
sigma_y_heat_CAM5.append(np.std(X[:,i]))
|
| 51 |
+
mu_y_heat_CAM5 = np.array(np.array(mu_y_heat_CAM5),dtype=np.float32)
|
| 52 |
+
sigma_y_heat_CAM5 = np.array(np.array(sigma_y_heat_CAM5),dtype=np.float32)
|
| 53 |
+
np.save('norm/mu_y_heat_CAM5.npy',mu_y_heat_CAM5)
|
| 54 |
+
np.save('norm/sigma_y_heat_CAM5.npy',sigma_y_heat_CAM5)
|
| 55 |
+
elif sim == 'SPCAM':
|
| 56 |
+
if is_input == 1:
|
| 57 |
+
X = np.load('data_SPCAM5_hist/three_month_inputs.npy')
|
| 58 |
+
X = np.array(X,dtype=np.float64)
|
| 59 |
+
|
| 60 |
+
mu_X_SPCAM5, sigma_X_SPCAM5 = [], []
|
| 61 |
+
# we do not use the vectorial format of computing mean and std on purpose
|
| 62 |
+
# in order to avoid the risk of precision error given the dataset size
|
| 63 |
+
for i in range(X.shape[1]):
|
| 64 |
+
mu_X_SPCAM5.append(np.mean(X[:,i]))
|
| 65 |
+
sigma_X_SPCAM5.append(np.std(X[:,i]))
|
| 66 |
+
mu_X_SPCAM5 = np.array(np.array(mu_X_SPCAM5),dtype=np.float32)
|
| 67 |
+
sigma_X_SPCAM5 = np.array(np.array(sigma_X_SPCAM5),dtype=np.float32)
|
| 68 |
+
np.save('norm/mu_X_SPCAM5.npy',mu_X_SPCAM5)
|
| 69 |
+
np.save('norm/sigma_X_SPCAM5.npy',sigma_X_SPCAM5)
|
| 70 |
+
else:
|
| 71 |
+
if case_var == 'moist':
|
| 72 |
+
X = np.load('data_SPCAM5_hist/three_month_outputs_moist.npy')
|
| 73 |
+
X = np.array(X,dtype=np.float64)
|
| 74 |
+
|
| 75 |
+
mu_y_moist_SPCAM5, sigma_y_moist_SPCAM5 = [], []
|
| 76 |
+
for i in range(X.shape[1]):
|
| 77 |
+
mu_y_moist_SPCAM5.append(np.mean(X[:,i]))
|
| 78 |
+
sigma_y_moist_SPCAM5.append(np.std(X[:,i]))
|
| 79 |
+
mu_y_moist_SPCAM5 = np.array(np.array(mu_y_moist_SPCAM5),dtype=np.float32)
|
| 80 |
+
sigma_y_moist_SPCAM5 = np.array(np.array(sigma_y_moist_SPCAM5),dtype=np.float32)
|
| 81 |
+
np.save('norm/mu_y_moist_SPCAM5.npy',mu_y_moist_SPCAM5)
|
| 82 |
+
np.save('norm/sigma_y_moist_SPCAM5.npy',sigma_y_moist_SPCAM5)
|
| 83 |
+
else:
|
| 84 |
+
X = np.load('data_SPCAM5_hist/three_month_outputs_heat.npy')
|
| 85 |
+
X = np.array(X,dtype=np.float64)
|
| 86 |
+
|
| 87 |
+
mu_y_heat_SPCAM5, sigma_y_heat_SPCAM5 = [], []
|
| 88 |
+
for i in range(X.shape[1]):
|
| 89 |
+
mu_y_heat_SPCAM5.append(np.mean(X[:,i]))
|
| 90 |
+
sigma_y_heat_SPCAM5.append(np.std(X[:,i]))
|
| 91 |
+
mu_y_heat_SPCAM5 = np.array(np.array(mu_y_heat_SPCAM5),dtype=np.float32)
|
| 92 |
+
sigma_y_heat_SPCAM5 = np.array(np.array(sigma_y_heat_SPCAM5),dtype=np.float32)
|
| 93 |
+
np.save('norm/mu_y_heat_SPCAM5.npy',mu_y_heat_SPCAM5)
|
| 94 |
+
np.save('norm/sigma_y_heat_SPCAM5.npy',sigma_y_heat_SPCAM5)
|
3_train_RPN_MF.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Mon May 1 17:19:00 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE']='false'
|
| 11 |
+
|
| 12 |
+
from jax import numpy as np
|
| 13 |
+
from jax import vmap, jit, random
|
| 14 |
+
import numpy as onp
|
| 15 |
+
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
##########################################################
|
| 19 |
+
##########################################################
|
| 20 |
+
##########################################################
|
| 21 |
+
|
| 22 |
+
def leakyRELU(x):
|
| 23 |
+
return np.where(x > 0, x, x * 0.15)
|
| 24 |
+
|
| 25 |
+
def MLP(layers, activation=leakyRELU): # np.tanh
|
| 26 |
+
def init(rng_key):
|
| 27 |
+
def init_layer(key, d_in, d_out):
|
| 28 |
+
k1, k2 = random.split(key)
|
| 29 |
+
glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
|
| 30 |
+
W = glorot_stddev*random.normal(k1, (d_in, d_out))
|
| 31 |
+
b = np.zeros(d_out)
|
| 32 |
+
return W, b
|
| 33 |
+
key, *keys = random.split(rng_key, len(layers))
|
| 34 |
+
params = list(map(init_layer, keys, layers[:-1], layers[1:]))
|
| 35 |
+
return params
|
| 36 |
+
def apply(params, inputs):
|
| 37 |
+
for W, b in params[:-1]:
|
| 38 |
+
outputs = np.dot(inputs, W) + b
|
| 39 |
+
inputs = activation(outputs)
|
| 40 |
+
W, b = params[-1]
|
| 41 |
+
outputs = np.dot(inputs, W) + b
|
| 42 |
+
return outputs
|
| 43 |
+
return init, apply
|
| 44 |
+
|
| 45 |
+
##########################################################
|
| 46 |
+
##########################################################
|
| 47 |
+
##########################################################
|
| 48 |
+
|
| 49 |
+
from jax import grad
|
| 50 |
+
from jax.example_libraries import optimizers
|
| 51 |
+
from functools import partial
|
| 52 |
+
import itertools
|
| 53 |
+
|
| 54 |
+
def exponential_decay_loc(step_size, decay_steps, decay_rate):
|
| 55 |
+
def schedule(i):
|
| 56 |
+
return step_size * decay_rate ** (i / decay_steps)
|
| 57 |
+
return schedule
|
| 58 |
+
|
| 59 |
+
# Define the model
|
| 60 |
+
class EnsembleRegression:
|
| 61 |
+
def __init__(self, layers_H, layers_L, ensemble_size, rng_key = random.PRNGKey(0)):
|
| 62 |
+
# Network initialization and evaluation functions
|
| 63 |
+
self.init_H, self.apply_H = MLP(layers_H)
|
| 64 |
+
self.init_prior_H, self.apply_prior_H = MLP(layers_H)
|
| 65 |
+
|
| 66 |
+
self.init_L, self.apply_L = MLP(layers_L)
|
| 67 |
+
self.init_prior_L, self.apply_prior_L = MLP(layers_L)
|
| 68 |
+
|
| 69 |
+
# Random keys
|
| 70 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 71 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 72 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 73 |
+
keys_3 = random.split(k3, ensemble_size)
|
| 74 |
+
|
| 75 |
+
# Initialize
|
| 76 |
+
params = vmap(self.init_H)(keys_1)
|
| 77 |
+
params_prior = vmap(self.init_prior_H)(keys_2)
|
| 78 |
+
|
| 79 |
+
rng_key, _ = random.split(rng_key, 2)
|
| 80 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 81 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 82 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 83 |
+
keys_3 = random.split(k3, ensemble_size)
|
| 84 |
+
params = params + vmap(self.init_L)(keys_1)
|
| 85 |
+
params_prior = params_prior + vmap(self.init_prior_L)(keys_2)
|
| 86 |
+
|
| 87 |
+
# Use optimizers to set optimizer initialization and update functions
|
| 88 |
+
lr = optimizers.exponential_decay(1e-4, decay_steps=1000, decay_rate=0.99)
|
| 89 |
+
self.opt_init, \
|
| 90 |
+
self.opt_update, \
|
| 91 |
+
self.get_params = optimizers.adam(lr)
|
| 92 |
+
|
| 93 |
+
self.opt_state = vmap(self.opt_init)(params)
|
| 94 |
+
self.prior_opt_state = vmap(self.opt_init)(params_prior)
|
| 95 |
+
self.key_opt_state = vmap(self.opt_init)(keys_3)
|
| 96 |
+
|
| 97 |
+
# Logger
|
| 98 |
+
self.itercount = itertools.count()
|
| 99 |
+
self.loss_log = []
|
| 100 |
+
self.loss_log_L = []
|
| 101 |
+
self.loss_log_H = []
|
| 102 |
+
|
| 103 |
+
# Define the forward pass
|
| 104 |
+
def net_forward_H(self, params, params_prior, inputs):
|
| 105 |
+
Y_pred = self.apply_H(params, inputs) + self.apply_prior_H(params_prior, inputs)
|
| 106 |
+
return Y_pred
|
| 107 |
+
def net_forward_L(self, params, params_prior, inputs):
|
| 108 |
+
Y_pred = self.apply_L(params, inputs) + self.apply_prior_L(params_prior, inputs)
|
| 109 |
+
return Y_pred
|
| 110 |
+
|
| 111 |
+
def loss(self, params, params_prior, batch, batch_L):
|
| 112 |
+
inputs, targets = batch
|
| 113 |
+
inputs_L, targets_L = batch_L
|
| 114 |
+
outputs = vmap(self.net_forward_H, (None, None, 0))(params[:len(layers_H)-1], params_prior[:len(layers_H)-1], inputs)
|
| 115 |
+
outputs_L = vmap(self.net_forward_L, (None, None, 0))(params[len(layers_H)-1:], params_prior[len(layers_H)-1:], inputs_L)
|
| 116 |
+
loss = np.mean((targets - outputs)**2) + alpha * np.mean((targets_L - outputs_L)**2)
|
| 117 |
+
return loss
|
| 118 |
+
def loss_H(self, params, params_prior, batch):
|
| 119 |
+
inputs, targets = batch
|
| 120 |
+
outputs = vmap(self.net_forward_H, (None, None, 0))(params, params_prior, inputs)
|
| 121 |
+
loss_H = np.mean((targets - outputs)**2)
|
| 122 |
+
return loss_H
|
| 123 |
+
def loss_L(self, params, params_prior, batch):
|
| 124 |
+
inputs, targets = batch
|
| 125 |
+
outputs = vmap(self.net_forward_L, (None, None, 0))(params, params_prior, inputs)
|
| 126 |
+
loss_L = np.mean((targets - outputs)**2)
|
| 127 |
+
return loss_L
|
| 128 |
+
|
| 129 |
+
# Define the update step
|
| 130 |
+
def step(self, i, opt_state, prior_opt_state, key_opt_state, batch, batch_L):
|
| 131 |
+
params = self.get_params(opt_state)
|
| 132 |
+
params_prior = self.get_params(prior_opt_state)
|
| 133 |
+
g = grad(self.loss)(params, params_prior, batch, batch_L)
|
| 134 |
+
return self.opt_update(i, g, opt_state)
|
| 135 |
+
|
| 136 |
+
def monitor_loss(self, opt_state, prior_opt_state, batch, batch_L):
|
| 137 |
+
params = self.get_params(opt_state)
|
| 138 |
+
params_prior = self.get_params(prior_opt_state)
|
| 139 |
+
loss_value = self.loss(params, params_prior, batch, batch_L)
|
| 140 |
+
return loss_value
|
| 141 |
+
def monitor_loss_H(self, opt_state, prior_opt_state, batch):
|
| 142 |
+
params = self.get_params(opt_state)[:len(layers_H)-1]
|
| 143 |
+
params_prior = self.get_params(prior_opt_state)[:len(layers_H)-1]
|
| 144 |
+
loss_value = self.loss_H(params, params_prior, batch)
|
| 145 |
+
return loss_value
|
| 146 |
+
def monitor_loss_L(self, opt_state, prior_opt_state, batch):
|
| 147 |
+
params = self.get_params(opt_state)[len(layers_H)-1:]
|
| 148 |
+
params_prior = self.get_params(prior_opt_state)[len(layers_H)-1:]
|
| 149 |
+
loss_value = self.loss_L(params, params_prior, batch)
|
| 150 |
+
return loss_value
|
| 151 |
+
|
| 152 |
+
def predict_L(self, x):
|
| 153 |
+
params = self.get_params(self.opt_state)[len(layers_H)-1:]
|
| 154 |
+
params_prior = self.get_params(self.prior_opt_state)[len(layers_H)-1:]
|
| 155 |
+
samples = self.posterior(params, params_prior, x)
|
| 156 |
+
return samples
|
| 157 |
+
|
| 158 |
+
# Evaluates predictions at test points
|
| 159 |
+
@partial(jit, static_argnums=(0,))
|
| 160 |
+
def posterior(self, params, params_prior, inputs):
|
| 161 |
+
samples = vmap(self.net_forward_L, (0, 0, 0))(params, params_prior, inputs)
|
| 162 |
+
return samples
|
| 163 |
+
|
| 164 |
+
def train(self, nIter = 1000):
|
| 165 |
+
# Define vectorized SGD step across the entire ensemble
|
| 166 |
+
v_step = jit(vmap(self.step, in_axes = (None, 0, 0, 0, 0, 0)))
|
| 167 |
+
v_monitor_loss = jit(vmap(self.monitor_loss, in_axes = (0, 0, 0, 0)))
|
| 168 |
+
v_monitor_loss_H = jit(vmap(self.monitor_loss_H, in_axes = (0, 0, 0)))
|
| 169 |
+
v_monitor_loss_L = jit(vmap(self.monitor_loss_L, in_axes = (0, 0, 0)))
|
| 170 |
+
|
| 171 |
+
# Main training loop
|
| 172 |
+
tt = time.time()
|
| 173 |
+
for it in range(nIter):
|
| 174 |
+
id_SF = it%nb_SF
|
| 175 |
+
id_b_MF = it%nb_MF
|
| 176 |
+
pred_L = self.predict_L( (batches_in_SF[0][id_SF][None,:,:]-mu_MF_in)/sigma_MF_in )
|
| 177 |
+
batch = pred_L, (batches_out_SF[0][id_SF][None,:,:]-mu_SF_out)/sigma_SF_out
|
| 178 |
+
|
| 179 |
+
batch_L = (batches_in_MF[0][id_b_MF][None,:,:]-mu_MF_in)/sigma_MF_in, (batches_out_MF[0][id_b_MF][None,:,:]-mu_MF_out)/sigma_MF_out
|
| 180 |
+
|
| 181 |
+
self.opt_state = v_step(it, self.opt_state, self.prior_opt_state, self.key_opt_state, batch, batch_L)
|
| 182 |
+
|
| 183 |
+
if it % nloss == 0:
|
| 184 |
+
loss_value = v_monitor_loss(self.opt_state, self.prior_opt_state, batch, batch_L)
|
| 185 |
+
loss_value_H = v_monitor_loss_H(self.opt_state, self.prior_opt_state, batch)
|
| 186 |
+
loss_value_L = v_monitor_loss_L(self.opt_state, self.prior_opt_state, batch_L)
|
| 187 |
+
self.loss_log.append(loss_value)
|
| 188 |
+
self.loss_log_H.append(loss_value_H)
|
| 189 |
+
self.loss_log_L.append(loss_value_L)
|
| 190 |
+
print(it, nIter, time.time() - tt, n_run_param)
|
| 191 |
+
tt = time.time()
|
| 192 |
+
if (it+1) % nsave == 0:
|
| 193 |
+
params = vmap(self.get_params)(self.opt_state)
|
| 194 |
+
params_H = params[:len(layers_H)-1]
|
| 195 |
+
params_L = params[len(layers_H)-1:]
|
| 196 |
+
for i in range(len(layers_H)-1):
|
| 197 |
+
for j in range(2):
|
| 198 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/HF_params_'+str(i)+'_'+str(j),params_H[i][j])
|
| 199 |
+
for i in range(len(layers_L)-1):
|
| 200 |
+
for j in range(2):
|
| 201 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/LF_params_'+str(i)+'_'+str(j),params_L[i][j])
|
| 202 |
+
|
| 203 |
+
##########################################################
|
| 204 |
+
##########################################################
|
| 205 |
+
##########################################################
|
| 206 |
+
|
| 207 |
+
n_remove = 4
|
| 208 |
+
ind_input = np.concatenate( (np.arange(26),n_remove+26+np.arange(26-n_remove),np.array([52,53,54,55])) )
|
| 209 |
+
dim_xH = ind_input.shape[0]
|
| 210 |
+
dim_xL = ind_input.shape[0]
|
| 211 |
+
|
| 212 |
+
ind_output_heat = np.arange(26)
|
| 213 |
+
ind_output_moist = n_remove+np.arange(26-n_remove)
|
| 214 |
+
|
| 215 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 216 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 217 |
+
|
| 218 |
+
ensemble_size = 1
|
| 219 |
+
|
| 220 |
+
layers_H = [dim_yL, 512, 512, 512, 512, 512, 512, 512, dim_yH]
|
| 221 |
+
layers_L = [dim_xL, 512, 512, 512, 512, 512, 512, 512, dim_yL]
|
| 222 |
+
|
| 223 |
+
n_run_param = 0
|
| 224 |
+
batch_size_MF = 2048
|
| 225 |
+
batch_size_SF = 2048
|
| 226 |
+
nsave = 50000
|
| 227 |
+
nloss = 500
|
| 228 |
+
alpha = 1.0
|
| 229 |
+
|
| 230 |
+
nepoch = 5
|
| 231 |
+
|
| 232 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,None,ind_output_heat],
|
| 233 |
+
onp.load('norm/mu_y_moist_CAM5.npy')[None,None,ind_output_moist]),axis=2)
|
| 234 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,None,ind_output_heat],
|
| 235 |
+
onp.load('norm/sigma_y_moist_CAM5.npy')[None,None,ind_output_moist]),axis=2)
|
| 236 |
+
|
| 237 |
+
mu_MF_in = onp.load('norm/mu_X_CAM5.npy')[None,None,ind_input]
|
| 238 |
+
sigma_MF_in = onp.load('norm/sigma_X_CAM5.npy')[None,None,ind_input]
|
| 239 |
+
mu_MF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,None,ind_output_heat],
|
| 240 |
+
onp.load('norm/mu_y_moist_CAM5.npy')[None,None,ind_output_moist]),axis=2)
|
| 241 |
+
sigma_MF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,None,ind_output_heat],
|
| 242 |
+
onp.load('norm/sigma_y_moist_CAM5.npy')[None,None,ind_output_moist]),axis=2)
|
| 243 |
+
print('loading data')
|
| 244 |
+
|
| 245 |
+
train_MF_in = onp.load('data_CAM5_8K/all_inputs.npy')[:,ind_input]
|
| 246 |
+
train_MF_out = onp.concatenate((onp.load('data_CAM5_8K/all_outputs_heat.npy')[:,ind_output_heat],
|
| 247 |
+
onp.load('data_CAM5_8K/all_outputs_moist.npy')[:,ind_output_moist]),axis=1)
|
| 248 |
+
train_SF_in = onp.load('data_SPCAM5_hist/three_month_inputs.npy')[:,ind_input]
|
| 249 |
+
train_SF_out = onp.concatenate((onp.load('data_SPCAM5_hist/three_month_outputs_heat.npy')[:,ind_output_heat],
|
| 250 |
+
onp.load('data_SPCAM5_hist/three_month_outputs_moist.npy')[:,ind_output_moist]),axis=1)
|
| 251 |
+
print('data loaded')
|
| 252 |
+
|
| 253 |
+
N_tot_MF = 121098240
|
| 254 |
+
N_tot_SF = 29528064
|
| 255 |
+
|
| 256 |
+
N_rpn_MF = 96878592
|
| 257 |
+
N_rpn_SF = 23623680
|
| 258 |
+
|
| 259 |
+
nb_MF = 47304
|
| 260 |
+
nb_SF = 11535
|
| 261 |
+
|
| 262 |
+
batches_in_MF = []
|
| 263 |
+
batches_out_MF = []
|
| 264 |
+
batches_in_SF = []
|
| 265 |
+
batches_out_SF = []
|
| 266 |
+
|
| 267 |
+
for i in range(ensemble_size):
|
| 268 |
+
print(i,ensemble_size)
|
| 269 |
+
|
| 270 |
+
idx_SF = onp.arange(N_rpn_SF)
|
| 271 |
+
idx_MF = onp.arange(N_tot_MF)
|
| 272 |
+
|
| 273 |
+
onp.random.seed(n_run_param)
|
| 274 |
+
onp.random.shuffle(idx_SF)
|
| 275 |
+
|
| 276 |
+
onp.random.seed(n_run_param)
|
| 277 |
+
onp.random.shuffle(idx_MF)
|
| 278 |
+
|
| 279 |
+
batches_in_MF_loc = []
|
| 280 |
+
batches_out_MF_loc = []
|
| 281 |
+
batches_in_SF_loc = []
|
| 282 |
+
batches_out_SF_loc = []
|
| 283 |
+
|
| 284 |
+
for j in range(nb_MF):
|
| 285 |
+
if j % (nb_MF%5000) == 0:
|
| 286 |
+
print(i,'MF',j,nb_MF)
|
| 287 |
+
batches_in_MF_loc.append( train_MF_in[idx_MF[:N_rpn_MF][j*batch_size_MF:(j+1)*batch_size_MF],:] )
|
| 288 |
+
batches_out_MF_loc.append( train_MF_out[idx_MF[:N_rpn_MF][j*batch_size_MF:(j+1)*batch_size_MF],:] )
|
| 289 |
+
for j in range(nb_SF):
|
| 290 |
+
if j % (nb_SF%5000) == 0:
|
| 291 |
+
print(i,'SF',j,nb_SF)
|
| 292 |
+
batches_in_SF_loc.append( train_SF_in[idx_SF[:N_rpn_SF][j*batch_size_SF:(j+1)*batch_size_SF],:] )
|
| 293 |
+
batches_out_SF_loc.append( train_SF_out[idx_SF[:N_rpn_SF][j*batch_size_SF:(j+1)*batch_size_SF],:] )
|
| 294 |
+
batches_in_MF.append(batches_in_MF_loc)
|
| 295 |
+
batches_out_MF.append(batches_out_MF_loc)
|
| 296 |
+
batches_in_SF.append(batches_in_SF_loc)
|
| 297 |
+
batches_out_SF.append(batches_out_SF_loc)
|
| 298 |
+
|
| 299 |
+
# Initialize model
|
| 300 |
+
model = EnsembleRegression(layers_H, layers_L, ensemble_size, rng_key = random.PRNGKey(0))
|
| 301 |
+
|
| 302 |
+
params_prior = vmap(model.get_params)(model.prior_opt_state)
|
| 303 |
+
params_prior_H = params_prior[:len(layers_H)-1]
|
| 304 |
+
params_prior_L = params_prior[len(layers_H)-1:]
|
| 305 |
+
print('saving parameters')
|
| 306 |
+
for i in range(len(layers_H)-1):
|
| 307 |
+
for j in range(2):
|
| 308 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/HF_params_prior_'+str(i)+'_'+str(j),params_prior_H[i][j])
|
| 309 |
+
for i in range(len(layers_L)-1):
|
| 310 |
+
for j in range(2):
|
| 311 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/LF_params_prior_'+str(i)+'_'+str(j),params_prior_L[i][j])
|
| 312 |
+
print('finished saving')
|
| 313 |
+
|
| 314 |
+
# Train model
|
| 315 |
+
model.train(nIter=nepoch*max(nb_MF,nb_SF))
|
| 316 |
+
|
| 317 |
+
params = vmap(model.get_params)(model.opt_state)
|
| 318 |
+
params_H = params[:len(layers_H)-1]
|
| 319 |
+
params_L = params[len(layers_H)-1:]
|
| 320 |
+
for i in range(len(layers_H)-1):
|
| 321 |
+
for j in range(2):
|
| 322 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/HF_params_'+str(i)+'_'+str(j),params_H[i][j])
|
| 323 |
+
for i in range(len(layers_L)-1):
|
| 324 |
+
for j in range(2):
|
| 325 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/LF_params_'+str(i)+'_'+str(j),params_L[i][j])
|
3_train_RPN_SF.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Mon May 1 17:26:17 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE']='false'
|
| 11 |
+
|
| 12 |
+
from jax import numpy as np
|
| 13 |
+
from jax import vmap, jit, random
|
| 14 |
+
import numpy as onp
|
| 15 |
+
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
##########################################################
|
| 19 |
+
##########################################################
|
| 20 |
+
##########################################################
|
| 21 |
+
|
| 22 |
+
def leakyRELU(x):
|
| 23 |
+
return np.where(x > 0, x, x * 0.15)
|
| 24 |
+
|
| 25 |
+
def MLP(layers, activation=leakyRELU): # np.tanh
|
| 26 |
+
def init(rng_key):
|
| 27 |
+
def init_layer(key, d_in, d_out):
|
| 28 |
+
k1, k2 = random.split(key)
|
| 29 |
+
glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
|
| 30 |
+
W = glorot_stddev*random.normal(k1, (d_in, d_out))
|
| 31 |
+
b = np.zeros(d_out)
|
| 32 |
+
return W, b
|
| 33 |
+
key, *keys = random.split(rng_key, len(layers))
|
| 34 |
+
params = list(map(init_layer, keys, layers[:-1], layers[1:]))
|
| 35 |
+
return params
|
| 36 |
+
def apply(params, inputs):
|
| 37 |
+
for W, b in params[:-1]:
|
| 38 |
+
outputs = np.dot(inputs, W) + b
|
| 39 |
+
inputs = activation(outputs)
|
| 40 |
+
W, b = params[-1]
|
| 41 |
+
outputs = np.dot(inputs, W) + b
|
| 42 |
+
return outputs
|
| 43 |
+
return init, apply
|
| 44 |
+
|
| 45 |
+
##########################################################
|
| 46 |
+
##########################################################
|
| 47 |
+
##########################################################
|
| 48 |
+
|
| 49 |
+
from jax import grad
|
| 50 |
+
from jax.example_libraries import optimizers
|
| 51 |
+
import itertools
|
| 52 |
+
|
| 53 |
+
def exponential_decay_loc(step_size, decay_steps, decay_rate):
|
| 54 |
+
def schedule(i):
|
| 55 |
+
return step_size * decay_rate ** (i / decay_steps)
|
| 56 |
+
return schedule
|
| 57 |
+
|
| 58 |
+
# Define the model
|
| 59 |
+
class EnsembleRegression:
|
| 60 |
+
def __init__(self, layers, ensemble_size, rng_key = random.PRNGKey(0)):
|
| 61 |
+
# Network initialization and evaluation functions
|
| 62 |
+
self.init, self.apply = MLP(layers)
|
| 63 |
+
self.init_prior, self.apply_prior = MLP(layers)
|
| 64 |
+
|
| 65 |
+
# Random keys
|
| 66 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 67 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 68 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 69 |
+
keys_3 = random.split(k3, ensemble_size)
|
| 70 |
+
|
| 71 |
+
# Initialize
|
| 72 |
+
params = vmap(self.init)(keys_1)
|
| 73 |
+
params_prior = vmap(self.init_prior)(keys_2)
|
| 74 |
+
|
| 75 |
+
# Use optimizers to set optimizer initialization and update functions
|
| 76 |
+
lr = optimizers.exponential_decay(1e-4, decay_steps=1000, decay_rate=0.99)
|
| 77 |
+
self.opt_init, \
|
| 78 |
+
self.opt_update, \
|
| 79 |
+
self.get_params = optimizers.adam(lr)
|
| 80 |
+
|
| 81 |
+
self.opt_state = vmap(self.opt_init)(params)
|
| 82 |
+
self.prior_opt_state = vmap(self.opt_init)(params_prior)
|
| 83 |
+
self.key_opt_state = vmap(self.opt_init)(keys_3)
|
| 84 |
+
|
| 85 |
+
# Logger
|
| 86 |
+
self.itercount = itertools.count()
|
| 87 |
+
self.loss_log = []
|
| 88 |
+
|
| 89 |
+
# Define the forward pass
|
| 90 |
+
def net_forward(self, params, params_prior, inputs):
|
| 91 |
+
Y_pred = self.apply(params, inputs) + self.apply_prior(params_prior, inputs)
|
| 92 |
+
return Y_pred
|
| 93 |
+
|
| 94 |
+
def loss(self, params, params_prior, batch):
|
| 95 |
+
inputs, targets = batch
|
| 96 |
+
# Compute forward pass
|
| 97 |
+
outputs = vmap(self.net_forward, (None, None, 0))(params, params_prior, inputs)
|
| 98 |
+
# Compute loss
|
| 99 |
+
loss = np.mean((targets - outputs)**2)
|
| 100 |
+
return loss
|
| 101 |
+
|
| 102 |
+
# Define the update step
|
| 103 |
+
def step(self, i, opt_state, prior_opt_state, key_opt_state, batch):
|
| 104 |
+
params = self.get_params(opt_state)
|
| 105 |
+
params_prior = self.get_params(prior_opt_state)
|
| 106 |
+
g = grad(self.loss)(params, params_prior, batch)
|
| 107 |
+
return self.opt_update(i, g, opt_state)
|
| 108 |
+
|
| 109 |
+
def monitor_loss(self, opt_state, prior_opt_state, batch):
|
| 110 |
+
params = self.get_params(opt_state)
|
| 111 |
+
params_prior = self.get_params(prior_opt_state)
|
| 112 |
+
loss_value = self.loss(params, params_prior, batch)
|
| 113 |
+
return loss_value
|
| 114 |
+
|
| 115 |
+
# Optimize parameters in a loop
|
| 116 |
+
def train(self, nIter = 1000):
|
| 117 |
+
# Define vectorized SGD step across the entire ensemble
|
| 118 |
+
v_step = jit(vmap(self.step, in_axes = (None, 0, 0, 0, 0)))
|
| 119 |
+
v_monitor_loss = jit(vmap(self.monitor_loss, in_axes = (0, 0, 0)))
|
| 120 |
+
|
| 121 |
+
# Main training loop
|
| 122 |
+
tt = time.time()
|
| 123 |
+
for it in range(nIter):
|
| 124 |
+
id_SF = (it+n_iter_prev)%nb_SF
|
| 125 |
+
|
| 126 |
+
inputs0_H = batches_in_SF[0][id_SF][None,:,:]
|
| 127 |
+
targets0_H = batches_out_SF[0][id_SF][None,:,:]
|
| 128 |
+
for ii in range(ensemble_size-1):
|
| 129 |
+
inputs0_H = onp.concatenate( (inputs0_H,batches_in_SF[ii+1][id_SF][None,:,:]), axis=0)
|
| 130 |
+
targets0_H = onp.concatenate( (targets0_H,batches_out_SF[ii+1][id_SF][None,:,:]), axis=0)
|
| 131 |
+
|
| 132 |
+
batch = (inputs0_H-mu_SF_in)/sigma_SF_in, (targets0_H-mu_SF_out)/sigma_SF_out
|
| 133 |
+
|
| 134 |
+
self.opt_state = v_step(it, self.opt_state, self.prior_opt_state, self.key_opt_state, batch)
|
| 135 |
+
|
| 136 |
+
if it % nloss == 0:
|
| 137 |
+
loss_value = v_monitor_loss(self.opt_state, self.prior_opt_state, batch)
|
| 138 |
+
self.loss_log.append(loss_value)
|
| 139 |
+
|
| 140 |
+
print(it, nIter, time.time() - tt, n_run_param)
|
| 141 |
+
tt = time.time()
|
| 142 |
+
if (it+1) % nsave == 0:
|
| 143 |
+
params = vmap(self.get_params)(self.opt_state)
|
| 144 |
+
for i in range(len(layers_H)-1):
|
| 145 |
+
for j in range(2):
|
| 146 |
+
np.save('SF_param/SF_param_'+str(n_run_param)+'/params_'+str(i)+'_'+str(j),params[i][j])
|
| 147 |
+
|
| 148 |
+
##########################################################
|
| 149 |
+
##########################################################
|
| 150 |
+
##########################################################
|
| 151 |
+
|
| 152 |
+
n_remove = 4
|
| 153 |
+
ind_input = np.concatenate( (np.arange(26),n_remove+26+np.arange(26-n_remove),np.array([52,53,54,55])) )
|
| 154 |
+
dim_xH = ind_input.shape[0]
|
| 155 |
+
dim_xL = ind_input.shape[0]
|
| 156 |
+
|
| 157 |
+
ind_output_heat = np.arange(26)
|
| 158 |
+
ind_output_moist = n_remove+np.arange(26-n_remove)
|
| 159 |
+
|
| 160 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 161 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 162 |
+
|
| 163 |
+
ensemble_size = 1
|
| 164 |
+
layers_H = [dim_xH, 512, 512, 512, 512, 512, 512, 512, dim_yH]
|
| 165 |
+
|
| 166 |
+
n_iter_prev = 0
|
| 167 |
+
|
| 168 |
+
n_run_param = 0
|
| 169 |
+
batch_size_SF = 2048
|
| 170 |
+
nsave = 50000
|
| 171 |
+
nloss = 500
|
| 172 |
+
|
| 173 |
+
nepoch = 5
|
| 174 |
+
|
| 175 |
+
mu_SF_in = onp.load('norm/mu_X_SPCAM5.npy')[None,None,ind_input]
|
| 176 |
+
sigma_SF_in = onp.load('norm/sigma_X_SPCAM5.npy')[None,None,ind_input]
|
| 177 |
+
|
| 178 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_SPCAM5.npy')[None,None,ind_output_heat],
|
| 179 |
+
onp.load('norm/mu_y_moist_SPCAM5.npy')[None,None,ind_output_moist]),axis=2)
|
| 180 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_SPCAM5.npy')[None,None,ind_output_heat],
|
| 181 |
+
onp.load('norm/sigma_y_moist_SPCAM5.npy')[None,None,ind_output_moist]),axis=2)
|
| 182 |
+
print('loading data')
|
| 183 |
+
|
| 184 |
+
train_SF_in = onp.load('data_SPCAM5_hist/three_month_inputs.npy')[:,ind_input]
|
| 185 |
+
train_SF_out = onp.concatenate((onp.load('data_SPCAM5_hist/three_month_outputs_heat.npy')[:,ind_output_heat],
|
| 186 |
+
onp.load('data_SPCAM5_hist/three_month_outputs_moist.npy')[:,ind_output_moist]),axis=1)
|
| 187 |
+
print('data loaded')
|
| 188 |
+
|
| 189 |
+
N_tot_MF = 121098240
|
| 190 |
+
N_tot_SF = 29528064
|
| 191 |
+
|
| 192 |
+
N_rpn_MF = 96878592
|
| 193 |
+
N_rpn_SF = 23623680
|
| 194 |
+
|
| 195 |
+
nb_MF = 47304
|
| 196 |
+
nb_SF = 11535
|
| 197 |
+
|
| 198 |
+
batches_in_SF = []
|
| 199 |
+
batches_out_SF = []
|
| 200 |
+
for i in range(ensemble_size):
|
| 201 |
+
print(i,ensemble_size)
|
| 202 |
+
|
| 203 |
+
idx_SF = onp.arange(N_rpn_SF)
|
| 204 |
+
|
| 205 |
+
onp.random.seed(n_run_param)
|
| 206 |
+
onp.random.shuffle(idx_SF)
|
| 207 |
+
|
| 208 |
+
batches_in_SF_loc = []
|
| 209 |
+
batches_out_SF_loc = []
|
| 210 |
+
|
| 211 |
+
for j in range(nb_SF):
|
| 212 |
+
if j % (nb_SF%5000) == 0:
|
| 213 |
+
print(i,'SF',j,nb_SF)
|
| 214 |
+
batches_in_SF_loc.append( train_SF_in[idx_SF[:N_rpn_SF][j*batch_size_SF:(j+1)*batch_size_SF],:] )
|
| 215 |
+
batches_out_SF_loc.append( train_SF_out[idx_SF[:N_rpn_SF][j*batch_size_SF:(j+1)*batch_size_SF],:] )
|
| 216 |
+
batches_in_SF.append(batches_in_SF_loc)
|
| 217 |
+
batches_out_SF.append(batches_out_SF_loc)
|
| 218 |
+
|
| 219 |
+
model = EnsembleRegression(layers_H, ensemble_size, rng_key = random.PRNGKey(0))#n_run_param))
|
| 220 |
+
|
| 221 |
+
params_prior = vmap(model.get_params)(model.prior_opt_state)
|
| 222 |
+
params_prior_H = params_prior[:len(layers_H)-1]
|
| 223 |
+
params_prior_L = params_prior[len(layers_H)-1:]
|
| 224 |
+
print('saving parameters')
|
| 225 |
+
for i in range(len(layers_H)-1):
|
| 226 |
+
for j in range(2):
|
| 227 |
+
np.save('SF_param/SF_param_'+str(n_run_param)+'/params_prior_'+str(i)+'_'+str(j),params_prior_H[i][j])
|
| 228 |
+
print('finished saving')
|
| 229 |
+
|
| 230 |
+
# Train model
|
| 231 |
+
model.train(nIter=nepoch*max(nb_MF,nb_SF)-n_iter_prev)
|
| 232 |
+
|
| 233 |
+
params = vmap(model.get_params)(model.opt_state)
|
| 234 |
+
params_H = params[:len(layers_H)-1]
|
| 235 |
+
for i in range(len(layers_H)-1):
|
| 236 |
+
for j in range(2):
|
| 237 |
+
np.save('SF_param/SF_param_'+str(n_run_param)+'/params_'+str(i)+'_'+str(j),params_H[i][j])
|
| 238 |
+
|
4_concat_param.py
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Tue Sep 5 13:42:56 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
N_param_gp = 128
|
| 12 |
+
|
| 13 |
+
is_MF = 0
|
| 14 |
+
is_LF = 0
|
| 15 |
+
is_SF = 1
|
| 16 |
+
|
| 17 |
+
if is_MF == 1:
|
| 18 |
+
HF_params_0_0 = np.load('MF_param/MF_param_0/HF_params_0_0.npy')
|
| 19 |
+
HF_params_0_1 = np.load('MF_param/MF_param_0/HF_params_0_1.npy')
|
| 20 |
+
HF_params_1_0 = np.load('MF_param/MF_param_0/HF_params_1_0.npy')
|
| 21 |
+
HF_params_1_1 = np.load('MF_param/MF_param_0/HF_params_1_1.npy')
|
| 22 |
+
HF_params_2_0 = np.load('MF_param/MF_param_0/HF_params_2_0.npy')
|
| 23 |
+
HF_params_2_1 = np.load('MF_param/MF_param_0/HF_params_2_1.npy')
|
| 24 |
+
HF_params_3_0 = np.load('MF_param/MF_param_0/HF_params_3_0.npy')
|
| 25 |
+
HF_params_3_1 = np.load('MF_param/MF_param_0/HF_params_3_1.npy')
|
| 26 |
+
HF_params_4_0 = np.load('MF_param/MF_param_0/HF_params_4_0.npy')
|
| 27 |
+
HF_params_4_1 = np.load('MF_param/MF_param_0/HF_params_4_1.npy')
|
| 28 |
+
HF_params_5_0 = np.load('MF_param/MF_param_0/HF_params_5_0.npy')
|
| 29 |
+
HF_params_5_1 = np.load('MF_param/MF_param_0/HF_params_5_1.npy')
|
| 30 |
+
HF_params_6_0 = np.load('MF_param/MF_param_0/HF_params_6_0.npy')
|
| 31 |
+
HF_params_6_1 = np.load('MF_param/MF_param_0/HF_params_6_1.npy')
|
| 32 |
+
HF_params_7_0 = np.load('MF_param/MF_param_0/HF_params_7_0.npy')
|
| 33 |
+
HF_params_7_1 = np.load('MF_param/MF_param_0/HF_params_7_1.npy')
|
| 34 |
+
|
| 35 |
+
HF_params_prior_0_0 = np.load('MF_param/MF_param_0/HF_params_prior_0_0.npy')
|
| 36 |
+
HF_params_prior_0_1 = np.load('MF_param/MF_param_0/HF_params_prior_0_1.npy')
|
| 37 |
+
HF_params_prior_1_0 = np.load('MF_param/MF_param_0/HF_params_prior_1_0.npy')
|
| 38 |
+
HF_params_prior_1_1 = np.load('MF_param/MF_param_0/HF_params_prior_1_1.npy')
|
| 39 |
+
HF_params_prior_2_0 = np.load('MF_param/MF_param_0/HF_params_prior_2_0.npy')
|
| 40 |
+
HF_params_prior_2_1 = np.load('MF_param/MF_param_0/HF_params_prior_2_1.npy')
|
| 41 |
+
HF_params_prior_3_0 = np.load('MF_param/MF_param_0/HF_params_prior_3_0.npy')
|
| 42 |
+
HF_params_prior_3_1 = np.load('MF_param/MF_param_0/HF_params_prior_3_1.npy')
|
| 43 |
+
HF_params_prior_4_0 = np.load('MF_param/MF_param_0/HF_params_prior_4_0.npy')
|
| 44 |
+
HF_params_prior_4_1 = np.load('MF_param/MF_param_0/HF_params_prior_4_1.npy')
|
| 45 |
+
HF_params_prior_5_0 = np.load('MF_param/MF_param_0/HF_params_prior_5_0.npy')
|
| 46 |
+
HF_params_prior_5_1 = np.load('MF_param/MF_param_0/HF_params_prior_5_1.npy')
|
| 47 |
+
HF_params_prior_6_0 = np.load('MF_param/MF_param_0/HF_params_prior_6_0.npy')
|
| 48 |
+
HF_params_prior_6_1 = np.load('MF_param/MF_param_0/HF_params_prior_6_1.npy')
|
| 49 |
+
HF_params_prior_7_0 = np.load('MF_param/MF_param_0/HF_params_prior_7_0.npy')
|
| 50 |
+
HF_params_prior_7_1 = np.load('MF_param/MF_param_0/HF_params_prior_7_1.npy')
|
| 51 |
+
|
| 52 |
+
for i in range(N_param_gp-1):
|
| 53 |
+
|
| 54 |
+
print(i)
|
| 55 |
+
HF_params_0_0 = np.concatenate( (HF_params_0_0,
|
| 56 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_0_0.npy')), axis = 0)
|
| 57 |
+
HF_params_0_1 = np.concatenate( (HF_params_0_1,
|
| 58 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_0_1.npy')), axis = 0)
|
| 59 |
+
HF_params_1_0 = np.concatenate( (HF_params_1_0,
|
| 60 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_1_0.npy')), axis = 0)
|
| 61 |
+
HF_params_1_1 = np.concatenate( (HF_params_1_1,
|
| 62 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_1_1.npy')), axis = 0)
|
| 63 |
+
HF_params_2_0 = np.concatenate( (HF_params_2_0,
|
| 64 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_2_0.npy')), axis = 0)
|
| 65 |
+
HF_params_2_1 = np.concatenate( (HF_params_2_1,
|
| 66 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_2_1.npy')), axis = 0)
|
| 67 |
+
HF_params_3_0 = np.concatenate( (HF_params_3_0,
|
| 68 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_3_0.npy')), axis = 0)
|
| 69 |
+
HF_params_3_1 = np.concatenate( (HF_params_3_1,
|
| 70 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_3_1.npy')), axis = 0)
|
| 71 |
+
HF_params_4_0 = np.concatenate( (HF_params_4_0,
|
| 72 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_4_0.npy')), axis = 0)
|
| 73 |
+
HF_params_4_1 = np.concatenate( (HF_params_4_1,
|
| 74 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_4_1.npy')), axis = 0)
|
| 75 |
+
HF_params_5_0 = np.concatenate( (HF_params_5_0,
|
| 76 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_5_0.npy')), axis = 0)
|
| 77 |
+
HF_params_5_1 = np.concatenate( (HF_params_5_1,
|
| 78 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_5_1.npy')), axis = 0)
|
| 79 |
+
HF_params_6_0 = np.concatenate( (HF_params_6_0,
|
| 80 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_6_0.npy')), axis = 0)
|
| 81 |
+
HF_params_6_1 = np.concatenate( (HF_params_6_1,
|
| 82 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_6_1.npy')), axis = 0)
|
| 83 |
+
HF_params_7_0 = np.concatenate( (HF_params_7_0,
|
| 84 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_7_0.npy')), axis = 0)
|
| 85 |
+
HF_params_7_1 = np.concatenate( (HF_params_7_1,
|
| 86 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_7_1.npy')), axis = 0)
|
| 87 |
+
|
| 88 |
+
HF_params_prior_0_0 = np.concatenate( (HF_params_prior_0_0,
|
| 89 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_0_0.npy')), axis = 0)
|
| 90 |
+
HF_params_prior_0_1 = np.concatenate( (HF_params_prior_0_1,
|
| 91 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_0_1.npy')), axis = 0)
|
| 92 |
+
HF_params_prior_1_0 = np.concatenate( (HF_params_prior_1_0,
|
| 93 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_1_0.npy')), axis = 0)
|
| 94 |
+
HF_params_prior_1_1 = np.concatenate( (HF_params_prior_1_1,
|
| 95 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_1_1.npy')), axis = 0)
|
| 96 |
+
HF_params_prior_2_0 = np.concatenate( (HF_params_prior_2_0,
|
| 97 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_2_0.npy')), axis = 0)
|
| 98 |
+
HF_params_prior_2_1 = np.concatenate( (HF_params_prior_2_1,
|
| 99 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_2_1.npy')), axis = 0)
|
| 100 |
+
HF_params_prior_3_0 = np.concatenate( (HF_params_prior_3_0,
|
| 101 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_3_0.npy')), axis = 0)
|
| 102 |
+
HF_params_prior_3_1 = np.concatenate( (HF_params_prior_3_1,
|
| 103 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_3_1.npy')), axis = 0)
|
| 104 |
+
HF_params_prior_4_0 = np.concatenate( (HF_params_prior_4_0,
|
| 105 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_4_0.npy')), axis = 0)
|
| 106 |
+
HF_params_prior_4_1 = np.concatenate( (HF_params_prior_4_1,
|
| 107 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_4_1.npy')), axis = 0)
|
| 108 |
+
HF_params_prior_5_0 = np.concatenate( (HF_params_prior_5_0,
|
| 109 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_5_0.npy')), axis = 0)
|
| 110 |
+
HF_params_prior_5_1 = np.concatenate( (HF_params_prior_5_1,
|
| 111 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_5_1.npy')), axis = 0)
|
| 112 |
+
HF_params_prior_6_0 = np.concatenate( (HF_params_prior_6_0,
|
| 113 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_6_0.npy')), axis = 0)
|
| 114 |
+
HF_params_prior_6_1 = np.concatenate( (HF_params_prior_6_1,
|
| 115 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_6_1.npy')), axis = 0)
|
| 116 |
+
HF_params_prior_7_0 = np.concatenate( (HF_params_prior_7_0,
|
| 117 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_7_0.npy')), axis = 0)
|
| 118 |
+
HF_params_prior_7_1 = np.concatenate( (HF_params_prior_7_1,
|
| 119 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/HF_params_prior_7_1.npy')), axis = 0)
|
| 120 |
+
|
| 121 |
+
np.save('MF_param/saved_param/HF_params_0_0.npy', HF_params_0_0)
|
| 122 |
+
np.save('MF_param/saved_param/HF_params_0_1.npy', HF_params_0_1)
|
| 123 |
+
np.save('MF_param/saved_param/HF_params_1_0.npy', HF_params_1_0)
|
| 124 |
+
np.save('MF_param/saved_param/HF_params_1_1.npy', HF_params_1_1)
|
| 125 |
+
np.save('MF_param/saved_param/HF_params_2_0.npy', HF_params_2_0)
|
| 126 |
+
np.save('MF_param/saved_param/HF_params_2_1.npy', HF_params_2_1)
|
| 127 |
+
np.save('MF_param/saved_param/HF_params_3_0.npy', HF_params_3_0)
|
| 128 |
+
np.save('MF_param/saved_param/HF_params_3_1.npy', HF_params_3_1)
|
| 129 |
+
np.save('MF_param/saved_param/HF_params_4_0.npy', HF_params_4_0)
|
| 130 |
+
np.save('MF_param/saved_param/HF_params_4_1.npy', HF_params_4_1)
|
| 131 |
+
np.save('MF_param/saved_param/HF_params_5_0.npy', HF_params_5_0)
|
| 132 |
+
np.save('MF_param/saved_param/HF_params_5_1.npy', HF_params_5_1)
|
| 133 |
+
np.save('MF_param/saved_param/HF_params_6_0.npy', HF_params_6_0)
|
| 134 |
+
np.save('MF_param/saved_param/HF_params_6_1.npy', HF_params_6_1)
|
| 135 |
+
np.save('MF_param/saved_param/HF_params_7_0.npy', HF_params_7_0)
|
| 136 |
+
np.save('MF_param/saved_param/HF_params_7_1.npy', HF_params_7_1)
|
| 137 |
+
|
| 138 |
+
np.save('MF_param/saved_param/HF_params_prior_0_0.npy', HF_params_prior_0_0)
|
| 139 |
+
np.save('MF_param/saved_param/HF_params_prior_0_1.npy', HF_params_prior_0_1)
|
| 140 |
+
np.save('MF_param/saved_param/HF_params_prior_1_0.npy', HF_params_prior_1_0)
|
| 141 |
+
np.save('MF_param/saved_param/HF_params_prior_1_1.npy', HF_params_prior_1_1)
|
| 142 |
+
np.save('MF_param/saved_param/HF_params_prior_2_0.npy', HF_params_prior_2_0)
|
| 143 |
+
np.save('MF_param/saved_param/HF_params_prior_2_1.npy', HF_params_prior_2_1)
|
| 144 |
+
np.save('MF_param/saved_param/HF_params_prior_3_0.npy', HF_params_prior_3_0)
|
| 145 |
+
np.save('MF_param/saved_param/HF_params_prior_3_1.npy', HF_params_prior_3_1)
|
| 146 |
+
np.save('MF_param/saved_param/HF_params_prior_4_0.npy', HF_params_prior_4_0)
|
| 147 |
+
np.save('MF_param/saved_param/HF_params_prior_4_1.npy', HF_params_prior_4_1)
|
| 148 |
+
np.save('MF_param/saved_param/HF_params_prior_5_0.npy', HF_params_prior_5_0)
|
| 149 |
+
np.save('MF_param/saved_param/HF_params_prior_5_1.npy', HF_params_prior_5_1)
|
| 150 |
+
np.save('MF_param/saved_param/HF_params_prior_6_0.npy', HF_params_prior_6_0)
|
| 151 |
+
np.save('MF_param/saved_param/HF_params_prior_6_1.npy', HF_params_prior_6_1)
|
| 152 |
+
np.save('MF_param/saved_param/HF_params_prior_7_0.npy', HF_params_prior_7_0)
|
| 153 |
+
np.save('MF_param/saved_param/HF_params_prior_7_1.npy', HF_params_prior_7_1)
|
| 154 |
+
|
| 155 |
+
if is_LF == 1:
|
| 156 |
+
LF_params_0_0 = np.load('MF_param/MF_param_0/LF_params_0_0.npy')
|
| 157 |
+
LF_params_0_1 = np.load('MF_param/MF_param_0/LF_params_0_1.npy')
|
| 158 |
+
LF_params_1_0 = np.load('MF_param/MF_param_0/LF_params_1_0.npy')
|
| 159 |
+
LF_params_1_1 = np.load('MF_param/MF_param_0/LF_params_1_1.npy')
|
| 160 |
+
LF_params_2_0 = np.load('MF_param/MF_param_0/LF_params_2_0.npy')
|
| 161 |
+
LF_params_2_1 = np.load('MF_param/MF_param_0/LF_params_2_1.npy')
|
| 162 |
+
LF_params_3_0 = np.load('MF_param/MF_param_0/LF_params_3_0.npy')
|
| 163 |
+
LF_params_3_1 = np.load('MF_param/MF_param_0/LF_params_3_1.npy')
|
| 164 |
+
LF_params_4_0 = np.load('MF_param/MF_param_0/LF_params_4_0.npy')
|
| 165 |
+
LF_params_4_1 = np.load('MF_param/MF_param_0/LF_params_4_1.npy')
|
| 166 |
+
LF_params_5_0 = np.load('MF_param/MF_param_0/LF_params_5_0.npy')
|
| 167 |
+
LF_params_5_1 = np.load('MF_param/MF_param_0/LF_params_5_1.npy')
|
| 168 |
+
LF_params_6_0 = np.load('MF_param/MF_param_0/LF_params_6_0.npy')
|
| 169 |
+
LF_params_6_1 = np.load('MF_param/MF_param_0/LF_params_6_1.npy')
|
| 170 |
+
LF_params_7_0 = np.load('MF_param/MF_param_0/LF_params_7_0.npy')
|
| 171 |
+
LF_params_7_1 = np.load('MF_param/MF_param_0/LF_params_7_1.npy')
|
| 172 |
+
|
| 173 |
+
LF_params_prior_0_0 = np.load('MF_param/MF_param_0/LF_params_prior_0_0.npy')
|
| 174 |
+
LF_params_prior_0_1 = np.load('MF_param/MF_param_0/LF_params_prior_0_1.npy')
|
| 175 |
+
LF_params_prior_1_0 = np.load('MF_param/MF_param_0/LF_params_prior_1_0.npy')
|
| 176 |
+
LF_params_prior_1_1 = np.load('MF_param/MF_param_0/LF_params_prior_1_1.npy')
|
| 177 |
+
LF_params_prior_2_0 = np.load('MF_param/MF_param_0/LF_params_prior_2_0.npy')
|
| 178 |
+
LF_params_prior_2_1 = np.load('MF_param/MF_param_0/LF_params_prior_2_1.npy')
|
| 179 |
+
LF_params_prior_3_0 = np.load('MF_param/MF_param_0/LF_params_prior_3_0.npy')
|
| 180 |
+
LF_params_prior_3_1 = np.load('MF_param/MF_param_0/LF_params_prior_3_1.npy')
|
| 181 |
+
LF_params_prior_4_0 = np.load('MF_param/MF_param_0/LF_params_prior_4_0.npy')
|
| 182 |
+
LF_params_prior_4_1 = np.load('MF_param/MF_param_0/LF_params_prior_4_1.npy')
|
| 183 |
+
LF_params_prior_5_0 = np.load('MF_param/MF_param_0/LF_params_prior_5_0.npy')
|
| 184 |
+
LF_params_prior_5_1 = np.load('MF_param/MF_param_0/LF_params_prior_5_1.npy')
|
| 185 |
+
LF_params_prior_6_0 = np.load('MF_param/MF_param_0/LF_params_prior_6_0.npy')
|
| 186 |
+
LF_params_prior_6_1 = np.load('MF_param/MF_param_0/LF_params_prior_6_1.npy')
|
| 187 |
+
LF_params_prior_7_0 = np.load('MF_param/MF_param_0/LF_params_prior_7_0.npy')
|
| 188 |
+
LF_params_prior_7_1 = np.load('MF_param/MF_param_0/LF_params_prior_7_1.npy')
|
| 189 |
+
|
| 190 |
+
for i in range(N_param_gp-1):
|
| 191 |
+
|
| 192 |
+
print(i)
|
| 193 |
+
LF_params_0_0 = np.concatenate( (LF_params_0_0,
|
| 194 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_0_0.npy')), axis = 0)
|
| 195 |
+
LF_params_0_1 = np.concatenate( (LF_params_0_1,
|
| 196 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_0_1.npy')), axis = 0)
|
| 197 |
+
LF_params_1_0 = np.concatenate( (LF_params_1_0,
|
| 198 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_1_0.npy')), axis = 0)
|
| 199 |
+
LF_params_1_1 = np.concatenate( (LF_params_1_1,
|
| 200 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_1_1.npy')), axis = 0)
|
| 201 |
+
LF_params_2_0 = np.concatenate( (LF_params_2_0,
|
| 202 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_2_0.npy')), axis = 0)
|
| 203 |
+
LF_params_2_1 = np.concatenate( (LF_params_2_1,
|
| 204 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_2_1.npy')), axis = 0)
|
| 205 |
+
LF_params_3_0 = np.concatenate( (LF_params_3_0,
|
| 206 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_3_0.npy')), axis = 0)
|
| 207 |
+
LF_params_3_1 = np.concatenate( (LF_params_3_1,
|
| 208 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_3_1.npy')), axis = 0)
|
| 209 |
+
LF_params_4_0 = np.concatenate( (LF_params_4_0,
|
| 210 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_4_0.npy')), axis = 0)
|
| 211 |
+
LF_params_4_1 = np.concatenate( (LF_params_4_1,
|
| 212 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_4_1.npy')), axis = 0)
|
| 213 |
+
LF_params_5_0 = np.concatenate( (LF_params_5_0,
|
| 214 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_5_0.npy')), axis = 0)
|
| 215 |
+
LF_params_5_1 = np.concatenate( (LF_params_5_1,
|
| 216 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_5_1.npy')), axis = 0)
|
| 217 |
+
LF_params_6_0 = np.concatenate( (LF_params_6_0,
|
| 218 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_6_0.npy')), axis = 0)
|
| 219 |
+
LF_params_6_1 = np.concatenate( (LF_params_6_1,
|
| 220 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_6_1.npy')), axis = 0)
|
| 221 |
+
LF_params_7_0 = np.concatenate( (LF_params_7_0,
|
| 222 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_7_0.npy')), axis = 0)
|
| 223 |
+
LF_params_7_1 = np.concatenate( (LF_params_7_1,
|
| 224 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_7_1.npy')), axis = 0)
|
| 225 |
+
|
| 226 |
+
LF_params_prior_0_0 = np.concatenate( (LF_params_prior_0_0,
|
| 227 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_0_0.npy')), axis = 0)
|
| 228 |
+
LF_params_prior_0_1 = np.concatenate( (LF_params_prior_0_1,
|
| 229 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_0_1.npy')), axis = 0)
|
| 230 |
+
LF_params_prior_1_0 = np.concatenate( (LF_params_prior_1_0,
|
| 231 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_1_0.npy')), axis = 0)
|
| 232 |
+
LF_params_prior_1_1 = np.concatenate( (LF_params_prior_1_1,
|
| 233 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_1_1.npy')), axis = 0)
|
| 234 |
+
LF_params_prior_2_0 = np.concatenate( (LF_params_prior_2_0,
|
| 235 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_2_0.npy')), axis = 0)
|
| 236 |
+
LF_params_prior_2_1 = np.concatenate( (LF_params_prior_2_1,
|
| 237 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_2_1.npy')), axis = 0)
|
| 238 |
+
LF_params_prior_3_0 = np.concatenate( (LF_params_prior_3_0,
|
| 239 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_3_0.npy')), axis = 0)
|
| 240 |
+
LF_params_prior_3_1 = np.concatenate( (LF_params_prior_3_1,
|
| 241 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_3_1.npy')), axis = 0)
|
| 242 |
+
LF_params_prior_4_0 = np.concatenate( (LF_params_prior_4_0,
|
| 243 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_4_0.npy')), axis = 0)
|
| 244 |
+
LF_params_prior_4_1 = np.concatenate( (LF_params_prior_4_1,
|
| 245 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_4_1.npy')), axis = 0)
|
| 246 |
+
LF_params_prior_5_0 = np.concatenate( (LF_params_prior_5_0,
|
| 247 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_5_0.npy')), axis = 0)
|
| 248 |
+
LF_params_prior_5_1 = np.concatenate( (LF_params_prior_5_1,
|
| 249 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_5_1.npy')), axis = 0)
|
| 250 |
+
LF_params_prior_6_0 = np.concatenate( (LF_params_prior_6_0,
|
| 251 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_6_0.npy')), axis = 0)
|
| 252 |
+
LF_params_prior_6_1 = np.concatenate( (LF_params_prior_6_1,
|
| 253 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_6_1.npy')), axis = 0)
|
| 254 |
+
LF_params_prior_7_0 = np.concatenate( (LF_params_prior_7_0,
|
| 255 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_7_0.npy')), axis = 0)
|
| 256 |
+
LF_params_prior_7_1 = np.concatenate( (LF_params_prior_7_1,
|
| 257 |
+
np.load('MF_param/MF_param_'+str(i+1)+'/LF_params_prior_7_1.npy')), axis = 0)
|
| 258 |
+
|
| 259 |
+
np.save('MF_param/saved_param/LF_params_0_0.npy', LF_params_0_0)
|
| 260 |
+
np.save('MF_param/saved_param/LF_params_0_1.npy', LF_params_0_1)
|
| 261 |
+
np.save('MF_param/saved_param/LF_params_1_0.npy', LF_params_1_0)
|
| 262 |
+
np.save('MF_param/saved_param/LF_params_1_1.npy', LF_params_1_1)
|
| 263 |
+
np.save('MF_param/saved_param/LF_params_2_0.npy', LF_params_2_0)
|
| 264 |
+
np.save('MF_param/saved_param/LF_params_2_1.npy', LF_params_2_1)
|
| 265 |
+
np.save('MF_param/saved_param/LF_params_3_0.npy', LF_params_3_0)
|
| 266 |
+
np.save('MF_param/saved_param/LF_params_3_1.npy', LF_params_3_1)
|
| 267 |
+
np.save('MF_param/saved_param/LF_params_4_0.npy', LF_params_4_0)
|
| 268 |
+
np.save('MF_param/saved_param/LF_params_4_1.npy', LF_params_4_1)
|
| 269 |
+
np.save('MF_param/saved_param/LF_params_5_0.npy', LF_params_5_0)
|
| 270 |
+
np.save('MF_param/saved_param/LF_params_5_1.npy', LF_params_5_1)
|
| 271 |
+
np.save('MF_param/saved_param/LF_params_6_0.npy', LF_params_6_0)
|
| 272 |
+
np.save('MF_param/saved_param/LF_params_6_1.npy', LF_params_6_1)
|
| 273 |
+
np.save('MF_param/saved_param/LF_params_7_0.npy', LF_params_7_0)
|
| 274 |
+
np.save('MF_param/saved_param/LF_params_7_1.npy', LF_params_7_1)
|
| 275 |
+
|
| 276 |
+
np.save('MF_param/saved_param/LF_params_prior_0_0.npy', LF_params_prior_0_0)
|
| 277 |
+
np.save('MF_param/saved_param/LF_params_prior_0_1.npy', LF_params_prior_0_1)
|
| 278 |
+
np.save('MF_param/saved_param/LF_params_prior_1_0.npy', LF_params_prior_1_0)
|
| 279 |
+
np.save('MF_param/saved_param/LF_params_prior_1_1.npy', LF_params_prior_1_1)
|
| 280 |
+
np.save('MF_param/saved_param/LF_params_prior_2_0.npy', LF_params_prior_2_0)
|
| 281 |
+
np.save('MF_param/saved_param/LF_params_prior_2_1.npy', LF_params_prior_2_1)
|
| 282 |
+
np.save('MF_param/saved_param/LF_params_prior_3_0.npy', LF_params_prior_3_0)
|
| 283 |
+
np.save('MF_param/saved_param/LF_params_prior_3_1.npy', LF_params_prior_3_1)
|
| 284 |
+
np.save('MF_param/saved_param/LF_params_prior_4_0.npy', LF_params_prior_4_0)
|
| 285 |
+
np.save('MF_param/saved_param/LF_params_prior_4_1.npy', LF_params_prior_4_1)
|
| 286 |
+
np.save('MF_param/saved_param/LF_params_prior_5_0.npy', LF_params_prior_5_0)
|
| 287 |
+
np.save('MF_param/saved_param/LF_params_prior_5_1.npy', LF_params_prior_5_1)
|
| 288 |
+
np.save('MF_param/saved_param/LF_params_prior_6_0.npy', LF_params_prior_6_0)
|
| 289 |
+
np.save('MF_param/saved_param/LF_params_prior_6_1.npy', LF_params_prior_6_1)
|
| 290 |
+
np.save('MF_param/saved_param/LF_params_prior_7_0.npy', LF_params_prior_7_0)
|
| 291 |
+
np.save('MF_param/saved_param/LF_params_prior_7_1.npy', LF_params_prior_7_1)
|
| 292 |
+
|
| 293 |
+
if is_SF == 1:
|
| 294 |
+
SF_params_0_0 = np.load('SF_param/SF_param_0/params_0_0.npy')
|
| 295 |
+
SF_params_0_1 = np.load('SF_param/SF_param_0/params_0_1.npy')
|
| 296 |
+
SF_params_1_0 = np.load('SF_param/SF_param_0/params_1_0.npy')
|
| 297 |
+
SF_params_1_1 = np.load('SF_param/SF_param_0/params_1_1.npy')
|
| 298 |
+
SF_params_2_0 = np.load('SF_param/SF_param_0/params_2_0.npy')
|
| 299 |
+
SF_params_2_1 = np.load('SF_param/SF_param_0/params_2_1.npy')
|
| 300 |
+
SF_params_3_0 = np.load('SF_param/SF_param_0/params_3_0.npy')
|
| 301 |
+
SF_params_3_1 = np.load('SF_param/SF_param_0/params_3_1.npy')
|
| 302 |
+
SF_params_4_0 = np.load('SF_param/SF_param_0/params_4_0.npy')
|
| 303 |
+
SF_params_4_1 = np.load('SF_param/SF_param_0/params_4_1.npy')
|
| 304 |
+
SF_params_5_0 = np.load('SF_param/SF_param_0/params_5_0.npy')
|
| 305 |
+
SF_params_5_1 = np.load('SF_param/SF_param_0/params_5_1.npy')
|
| 306 |
+
SF_params_6_0 = np.load('SF_param/SF_param_0/params_6_0.npy')
|
| 307 |
+
SF_params_6_1 = np.load('SF_param/SF_param_0/params_6_1.npy')
|
| 308 |
+
SF_params_7_0 = np.load('SF_param/SF_param_0/params_7_0.npy')
|
| 309 |
+
SF_params_7_1 = np.load('SF_param/SF_param_0/params_7_1.npy')
|
| 310 |
+
|
| 311 |
+
SF_params_prior_0_0 = np.load('SF_param/SF_param_0/params_prior_0_0.npy')
|
| 312 |
+
SF_params_prior_0_1 = np.load('SF_param/SF_param_0/params_prior_0_1.npy')
|
| 313 |
+
SF_params_prior_1_0 = np.load('SF_param/SF_param_0/params_prior_1_0.npy')
|
| 314 |
+
SF_params_prior_1_1 = np.load('SF_param/SF_param_0/params_prior_1_1.npy')
|
| 315 |
+
SF_params_prior_2_0 = np.load('SF_param/SF_param_0/params_prior_2_0.npy')
|
| 316 |
+
SF_params_prior_2_1 = np.load('SF_param/SF_param_0/params_prior_2_1.npy')
|
| 317 |
+
SF_params_prior_3_0 = np.load('SF_param/SF_param_0/params_prior_3_0.npy')
|
| 318 |
+
SF_params_prior_3_1 = np.load('SF_param/SF_param_0/params_prior_3_1.npy')
|
| 319 |
+
SF_params_prior_4_0 = np.load('SF_param/SF_param_0/params_prior_4_0.npy')
|
| 320 |
+
SF_params_prior_4_1 = np.load('SF_param/SF_param_0/params_prior_4_1.npy')
|
| 321 |
+
SF_params_prior_5_0 = np.load('SF_param/SF_param_0/params_prior_5_0.npy')
|
| 322 |
+
SF_params_prior_5_1 = np.load('SF_param/SF_param_0/params_prior_5_1.npy')
|
| 323 |
+
SF_params_prior_6_0 = np.load('SF_param/SF_param_0/params_prior_6_0.npy')
|
| 324 |
+
SF_params_prior_6_1 = np.load('SF_param/SF_param_0/params_prior_6_1.npy')
|
| 325 |
+
SF_params_prior_7_0 = np.load('SF_param/SF_param_0/params_prior_7_0.npy')
|
| 326 |
+
SF_params_prior_7_1 = np.load('SF_param/SF_param_0/params_prior_7_1.npy')
|
| 327 |
+
|
| 328 |
+
for i in range(N_param_gp-1):
|
| 329 |
+
|
| 330 |
+
print(i)
|
| 331 |
+
SF_params_0_0 = np.concatenate( (SF_params_0_0,
|
| 332 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_0_0.npy')), axis = 0)
|
| 333 |
+
SF_params_0_1 = np.concatenate( (SF_params_0_1,
|
| 334 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_0_1.npy')), axis = 0)
|
| 335 |
+
SF_params_1_0 = np.concatenate( (SF_params_1_0,
|
| 336 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_1_0.npy')), axis = 0)
|
| 337 |
+
SF_params_1_1 = np.concatenate( (SF_params_1_1,
|
| 338 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_1_1.npy')), axis = 0)
|
| 339 |
+
SF_params_2_0 = np.concatenate( (SF_params_2_0,
|
| 340 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_2_0.npy')), axis = 0)
|
| 341 |
+
SF_params_2_1 = np.concatenate( (SF_params_2_1,
|
| 342 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_2_1.npy')), axis = 0)
|
| 343 |
+
SF_params_3_0 = np.concatenate( (SF_params_3_0,
|
| 344 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_3_0.npy')), axis = 0)
|
| 345 |
+
SF_params_3_1 = np.concatenate( (SF_params_3_1,
|
| 346 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_3_1.npy')), axis = 0)
|
| 347 |
+
SF_params_4_0 = np.concatenate( (SF_params_4_0,
|
| 348 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_4_0.npy')), axis = 0)
|
| 349 |
+
SF_params_4_1 = np.concatenate( (SF_params_4_1,
|
| 350 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_4_1.npy')), axis = 0)
|
| 351 |
+
SF_params_5_0 = np.concatenate( (SF_params_5_0,
|
| 352 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_5_0.npy')), axis = 0)
|
| 353 |
+
SF_params_5_1 = np.concatenate( (SF_params_5_1,
|
| 354 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_5_1.npy')), axis = 0)
|
| 355 |
+
SF_params_6_0 = np.concatenate( (SF_params_6_0,
|
| 356 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_6_0.npy')), axis = 0)
|
| 357 |
+
SF_params_6_1 = np.concatenate( (SF_params_6_1,
|
| 358 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_6_1.npy')), axis = 0)
|
| 359 |
+
SF_params_7_0 = np.concatenate( (SF_params_7_0,
|
| 360 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_7_0.npy')), axis = 0)
|
| 361 |
+
SF_params_7_1 = np.concatenate( (SF_params_7_1,
|
| 362 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_7_1.npy')), axis = 0)
|
| 363 |
+
|
| 364 |
+
SF_params_prior_0_0 = np.concatenate( (SF_params_prior_0_0,
|
| 365 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_0_0.npy')), axis = 0)
|
| 366 |
+
SF_params_prior_0_1 = np.concatenate( (SF_params_prior_0_1,
|
| 367 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_0_1.npy')), axis = 0)
|
| 368 |
+
SF_params_prior_1_0 = np.concatenate( (SF_params_prior_1_0,
|
| 369 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_1_0.npy')), axis = 0)
|
| 370 |
+
SF_params_prior_1_1 = np.concatenate( (SF_params_prior_1_1,
|
| 371 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_1_1.npy')), axis = 0)
|
| 372 |
+
SF_params_prior_2_0 = np.concatenate( (SF_params_prior_2_0,
|
| 373 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_2_0.npy')), axis = 0)
|
| 374 |
+
SF_params_prior_2_1 = np.concatenate( (SF_params_prior_2_1,
|
| 375 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_2_1.npy')), axis = 0)
|
| 376 |
+
SF_params_prior_3_0 = np.concatenate( (SF_params_prior_3_0,
|
| 377 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_3_0.npy')), axis = 0)
|
| 378 |
+
SF_params_prior_3_1 = np.concatenate( (SF_params_prior_3_1,
|
| 379 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_3_1.npy')), axis = 0)
|
| 380 |
+
SF_params_prior_4_0 = np.concatenate( (SF_params_prior_4_0,
|
| 381 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_4_0.npy')), axis = 0)
|
| 382 |
+
SF_params_prior_4_1 = np.concatenate( (SF_params_prior_4_1,
|
| 383 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_4_1.npy')), axis = 0)
|
| 384 |
+
SF_params_prior_5_0 = np.concatenate( (SF_params_prior_5_0,
|
| 385 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_5_0.npy')), axis = 0)
|
| 386 |
+
SF_params_prior_5_1 = np.concatenate( (SF_params_prior_5_1,
|
| 387 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_5_1.npy')), axis = 0)
|
| 388 |
+
SF_params_prior_6_0 = np.concatenate( (SF_params_prior_6_0,
|
| 389 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_6_0.npy')), axis = 0)
|
| 390 |
+
SF_params_prior_6_1 = np.concatenate( (SF_params_prior_6_1,
|
| 391 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_6_1.npy')), axis = 0)
|
| 392 |
+
SF_params_prior_7_0 = np.concatenate( (SF_params_prior_7_0,
|
| 393 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_7_0.npy')), axis = 0)
|
| 394 |
+
SF_params_prior_7_1 = np.concatenate( (SF_params_prior_7_1,
|
| 395 |
+
np.load('SF_param/SF_param_'+str(i+1)+'/params_prior_7_1.npy')), axis = 0)
|
| 396 |
+
|
| 397 |
+
np.save('SF_param/saved_param/SF_params_0_0.npy', SF_params_0_0)
|
| 398 |
+
np.save('SF_param/saved_param/SF_params_0_1.npy', SF_params_0_1)
|
| 399 |
+
np.save('SF_param/saved_param/SF_params_1_0.npy', SF_params_1_0)
|
| 400 |
+
np.save('SF_param/saved_param/SF_params_1_1.npy', SF_params_1_1)
|
| 401 |
+
np.save('SF_param/saved_param/SF_params_2_0.npy', SF_params_2_0)
|
| 402 |
+
np.save('SF_param/saved_param/SF_params_2_1.npy', SF_params_2_1)
|
| 403 |
+
np.save('SF_param/saved_param/SF_params_3_0.npy', SF_params_3_0)
|
| 404 |
+
np.save('SF_param/saved_param/SF_params_3_1.npy', SF_params_3_1)
|
| 405 |
+
np.save('SF_param/saved_param/SF_params_4_0.npy', SF_params_4_0)
|
| 406 |
+
np.save('SF_param/saved_param/SF_params_4_1.npy', SF_params_4_1)
|
| 407 |
+
np.save('SF_param/saved_param/SF_params_5_0.npy', SF_params_5_0)
|
| 408 |
+
np.save('SF_param/saved_param/SF_params_5_1.npy', SF_params_5_1)
|
| 409 |
+
np.save('SF_param/saved_param/SF_params_6_0.npy', SF_params_6_0)
|
| 410 |
+
np.save('SF_param/saved_param/SF_params_6_1.npy', SF_params_6_1)
|
| 411 |
+
np.save('SF_param/saved_param/SF_params_7_0.npy', SF_params_7_0)
|
| 412 |
+
np.save('SF_param/saved_param/SF_params_7_1.npy', SF_params_7_1)
|
| 413 |
+
|
| 414 |
+
np.save('SF_param/saved_param/SF_params_prior_0_0.npy', SF_params_prior_0_0)
|
| 415 |
+
np.save('SF_param/saved_param/SF_params_prior_0_1.npy', SF_params_prior_0_1)
|
| 416 |
+
np.save('SF_param/saved_param/SF_params_prior_1_0.npy', SF_params_prior_1_0)
|
| 417 |
+
np.save('SF_param/saved_param/SF_params_prior_1_1.npy', SF_params_prior_1_1)
|
| 418 |
+
np.save('SF_param/saved_param/SF_params_prior_2_0.npy', SF_params_prior_2_0)
|
| 419 |
+
np.save('SF_param/saved_param/SF_params_prior_2_1.npy', SF_params_prior_2_1)
|
| 420 |
+
np.save('SF_param/saved_param/SF_params_prior_3_0.npy', SF_params_prior_3_0)
|
| 421 |
+
np.save('SF_param/saved_param/SF_params_prior_3_1.npy', SF_params_prior_3_1)
|
| 422 |
+
np.save('SF_param/saved_param/SF_params_prior_4_0.npy', SF_params_prior_4_0)
|
| 423 |
+
np.save('SF_param/saved_param/SF_params_prior_4_1.npy', SF_params_prior_4_1)
|
| 424 |
+
np.save('SF_param/saved_param/SF_params_prior_5_0.npy', SF_params_prior_5_0)
|
| 425 |
+
np.save('SF_param/saved_param/SF_params_prior_5_1.npy', SF_params_prior_5_1)
|
| 426 |
+
np.save('SF_param/saved_param/SF_params_prior_6_0.npy', SF_params_prior_6_0)
|
| 427 |
+
np.save('SF_param/saved_param/SF_params_prior_6_1.npy', SF_params_prior_6_1)
|
| 428 |
+
np.save('SF_param/saved_param/SF_params_prior_7_0.npy', SF_params_prior_7_0)
|
| 429 |
+
np.save('SF_param/saved_param/SF_params_prior_7_1.npy', SF_params_prior_7_1)
|
4_pred_RPN_LF.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Fri May 26 11:19:06 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE']='false'
|
| 11 |
+
|
| 12 |
+
from jax import numpy as np
|
| 13 |
+
from jax import vmap, jit, random
|
| 14 |
+
|
| 15 |
+
import numpy as onp
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
##########################################################
|
| 19 |
+
##########################################################
|
| 20 |
+
##########################################################
|
| 21 |
+
|
| 22 |
+
def leakyRELU(x):
|
| 23 |
+
return np.where(x > 0, x, x * 0.15)
|
| 24 |
+
|
| 25 |
+
def MLP(layers, activation=leakyRELU):
|
| 26 |
+
def init(rng_key):
|
| 27 |
+
def init_layer(key, d_in, d_out):
|
| 28 |
+
k1, k2 = random.split(key)
|
| 29 |
+
glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
|
| 30 |
+
W = glorot_stddev*random.normal(k1, (d_in, d_out))
|
| 31 |
+
b = np.zeros(d_out)
|
| 32 |
+
return W, b
|
| 33 |
+
key, *keys = random.split(rng_key, len(layers))
|
| 34 |
+
params = list(map(init_layer, keys, layers[:-1], layers[1:]))
|
| 35 |
+
return params
|
| 36 |
+
def apply(params, inputs):
|
| 37 |
+
for W, b in params[:-1]:
|
| 38 |
+
outputs = np.dot(inputs, W) + b
|
| 39 |
+
inputs = activation(outputs)
|
| 40 |
+
W, b = params[-1]
|
| 41 |
+
outputs = np.dot(inputs, W) + b
|
| 42 |
+
return outputs
|
| 43 |
+
return init, apply
|
| 44 |
+
|
| 45 |
+
##########################################################
|
| 46 |
+
##########################################################
|
| 47 |
+
##########################################################
|
| 48 |
+
|
| 49 |
+
from jax.example_libraries import optimizers
|
| 50 |
+
from functools import partial
|
| 51 |
+
import itertools
|
| 52 |
+
|
| 53 |
+
# Define the model
|
| 54 |
+
class EnsembleRegression:
|
| 55 |
+
def __init__(self, layers, ensemble_size, rng_key = random.PRNGKey(0)):
|
| 56 |
+
# Network initialization and evaluation functions
|
| 57 |
+
self.init, self.apply = MLP(layers)
|
| 58 |
+
self.init_prior, self.apply_prior = MLP(layers)
|
| 59 |
+
|
| 60 |
+
# Random keys
|
| 61 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 62 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 63 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 64 |
+
keys_3 = random.split(k3, ensemble_size)
|
| 65 |
+
|
| 66 |
+
# Initialize
|
| 67 |
+
params = vmap(self.init)(keys_1)
|
| 68 |
+
params_prior = vmap(self.init_prior)(keys_2)
|
| 69 |
+
|
| 70 |
+
# Use optimizers to set optimizer initialization and update functions
|
| 71 |
+
lr = optimizers.exponential_decay(1e-4, decay_steps=1000, decay_rate=0.999)
|
| 72 |
+
lr = optimizers.exponential_decay(0.000227, decay_steps=1000, decay_rate=0.999)
|
| 73 |
+
self.opt_init, \
|
| 74 |
+
self.opt_update, \
|
| 75 |
+
self.get_params = optimizers.adam(lr)
|
| 76 |
+
|
| 77 |
+
self.opt_state = vmap(self.opt_init)(params)
|
| 78 |
+
self.prior_opt_state = vmap(self.opt_init)(params_prior)
|
| 79 |
+
self.key_opt_state = vmap(self.opt_init)(keys_3)
|
| 80 |
+
|
| 81 |
+
# Logger
|
| 82 |
+
self.itercount = itertools.count()
|
| 83 |
+
self.loss_log = []
|
| 84 |
+
|
| 85 |
+
# Define the forward pass
|
| 86 |
+
def net_forward(self, params, params_prior, inputs):
|
| 87 |
+
Y_pred = self.apply(params, inputs) + self.apply_prior(params_prior, inputs)
|
| 88 |
+
return Y_pred
|
| 89 |
+
|
| 90 |
+
# Evaluates predictions at test points
|
| 91 |
+
@partial(jit, static_argnums=(0,))
|
| 92 |
+
def posterior(self, params, inputs):
|
| 93 |
+
params, params_prior = params
|
| 94 |
+
samples = vmap(self.net_forward, (0, 0, 0))(params, params_prior, inputs)
|
| 95 |
+
return samples
|
| 96 |
+
|
| 97 |
+
##########################################################
|
| 98 |
+
##########################################################
|
| 99 |
+
##########################################################
|
| 100 |
+
|
| 101 |
+
# Helper functions
|
| 102 |
+
normalize = lambda x, mu, std: (x-mu)/std
|
| 103 |
+
|
| 104 |
+
n_remove = 4
|
| 105 |
+
ind_input = np.concatenate( (np.arange(26),n_remove+26+np.arange(26-n_remove),np.array([52,53,54,55])) )
|
| 106 |
+
dim_xH = ind_input.shape[0]
|
| 107 |
+
dim_xL = ind_input.shape[0]
|
| 108 |
+
|
| 109 |
+
ind_output_heat = np.arange(26)
|
| 110 |
+
ind_output_moist = n_remove+np.arange(26-n_remove)
|
| 111 |
+
|
| 112 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 113 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 114 |
+
|
| 115 |
+
ensemble_size = 1
|
| 116 |
+
|
| 117 |
+
layers_L = [dim_xL, 512, 512, 512, 512, 512, 512, 512, dim_yL]
|
| 118 |
+
|
| 119 |
+
id_step = 1 # 1 or 2 for instance in case we dont have enough RAM memory to make
|
| 120 |
+
# predictions for the whole test dataset at once.
|
| 121 |
+
n_run_param = 0
|
| 122 |
+
|
| 123 |
+
key = random.PRNGKey(n_run_param)
|
| 124 |
+
model_L = EnsembleRegression(layers_L, ensemble_size, key)
|
| 125 |
+
|
| 126 |
+
mu_MF_in = onp.load('norm/mu_X_CAM5.npy')[None,ind_input]
|
| 127 |
+
sigma_MF_in = onp.load('norm/sigma_X_CAM5.npy')[None,ind_input]
|
| 128 |
+
|
| 129 |
+
print('loading NN parameters')
|
| 130 |
+
|
| 131 |
+
params_L = []
|
| 132 |
+
params_prior_L = []
|
| 133 |
+
|
| 134 |
+
for i in range(len(layers_L)-1):
|
| 135 |
+
params_L.append( ( np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_'+str(i)+'_'+str(0)+'.npy')[0:1,:,:] ,
|
| 136 |
+
np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_'+str(i)+'_'+str(1)+'.npy')[0:1,:] ) )
|
| 137 |
+
params_prior_L.append( ( np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_prior_'+str(i)+'_'+str(0)+'.npy')[0:1,:,:] ,
|
| 138 |
+
np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_prior_'+str(i)+'_'+str(1)+'.npy')[0:1,:] ) )
|
| 139 |
+
|
| 140 |
+
opt_params_L = (params_L, params_prior_L)
|
| 141 |
+
|
| 142 |
+
@jit
|
| 143 |
+
def predict_L(x):
|
| 144 |
+
# accepts and returns un-normalized data
|
| 145 |
+
x = np.tile(x[np.newaxis,:,:], (ensemble_size, 1, 1))
|
| 146 |
+
x = normalize(x, mu_MF_in, sigma_MF_in)
|
| 147 |
+
samples = model_L.posterior(opt_params_L, x)
|
| 148 |
+
return samples
|
| 149 |
+
|
| 150 |
+
##################################
|
| 151 |
+
############## test ##############
|
| 152 |
+
##################################
|
| 153 |
+
|
| 154 |
+
print('loading test')
|
| 155 |
+
if id_step == 1:
|
| 156 |
+
t = time.time()
|
| 157 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[:59387904,ind_input]
|
| 158 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 159 |
+
elif id_step == 2:
|
| 160 |
+
t = time.time()
|
| 161 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[59387904:,ind_input]
|
| 162 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 163 |
+
|
| 164 |
+
print('n_run_param : ', n_run_param, 'id_step : ', id_step, 'Computing pred')
|
| 165 |
+
t = time.time()
|
| 166 |
+
samples_test_H = predict_L(test_XH)
|
| 167 |
+
print('Computing pred', 'time (s):', time.time() - t)
|
| 168 |
+
print('Saving pred')
|
| 169 |
+
t = time.time()
|
| 170 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/LF_test_pred_'+str(id_step)+'.npy', samples_test_H)
|
| 171 |
+
print('Saving pred', 'time (s):', time.time() - t)
|
4_pred_RPN_MF.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed May 3 17:32:12 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE']='false'
|
| 11 |
+
|
| 12 |
+
from jax import numpy as np
|
| 13 |
+
from jax import vmap, jit, random
|
| 14 |
+
|
| 15 |
+
import numpy as onp
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
##########################################################
|
| 19 |
+
##########################################################
|
| 20 |
+
##########################################################
|
| 21 |
+
|
| 22 |
+
def leakyRELU(x):
|
| 23 |
+
return np.where(x > 0, x, x * 0.15)
|
| 24 |
+
|
| 25 |
+
def MLP(layers, activation=leakyRELU): # np.tanh
|
| 26 |
+
def init(rng_key):
|
| 27 |
+
def init_layer(key, d_in, d_out):
|
| 28 |
+
k1, k2 = random.split(key)
|
| 29 |
+
glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
|
| 30 |
+
W = glorot_stddev*random.normal(k1, (d_in, d_out))
|
| 31 |
+
b = np.zeros(d_out)
|
| 32 |
+
return W, b
|
| 33 |
+
key, *keys = random.split(rng_key, len(layers))
|
| 34 |
+
params = list(map(init_layer, keys, layers[:-1], layers[1:]))
|
| 35 |
+
return params
|
| 36 |
+
def apply(params, inputs):
|
| 37 |
+
for W, b in params[:-1]:
|
| 38 |
+
outputs = np.dot(inputs, W) + b
|
| 39 |
+
inputs = activation(outputs)
|
| 40 |
+
W, b = params[-1]
|
| 41 |
+
outputs = np.dot(inputs, W) + b
|
| 42 |
+
return outputs
|
| 43 |
+
return init, apply
|
| 44 |
+
|
| 45 |
+
##########################################################
|
| 46 |
+
##########################################################
|
| 47 |
+
##########################################################
|
| 48 |
+
|
| 49 |
+
from jax.example_libraries import optimizers
|
| 50 |
+
from functools import partial
|
| 51 |
+
import itertools
|
| 52 |
+
|
| 53 |
+
# Define the model
|
| 54 |
+
class EnsembleRegression:
|
| 55 |
+
def __init__(self, layers, ensemble_size, rng_key = random.PRNGKey(0)):
|
| 56 |
+
# Network initialization and evaluation functions
|
| 57 |
+
self.init, self.apply = MLP(layers)
|
| 58 |
+
self.init_prior, self.apply_prior = MLP(layers)
|
| 59 |
+
|
| 60 |
+
# Random keys
|
| 61 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 62 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 63 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 64 |
+
keys_3 = random.split(k3, ensemble_size)
|
| 65 |
+
|
| 66 |
+
# Initialize
|
| 67 |
+
params = vmap(self.init)(keys_1)
|
| 68 |
+
params_prior = vmap(self.init_prior)(keys_2)
|
| 69 |
+
|
| 70 |
+
# Use optimizers to set optimizer initialization and update functions
|
| 71 |
+
lr = optimizers.exponential_decay(1e-4, decay_steps=1000, decay_rate=0.999)
|
| 72 |
+
lr = optimizers.exponential_decay(0.000227, decay_steps=1000, decay_rate=0.999)
|
| 73 |
+
self.opt_init, \
|
| 74 |
+
self.opt_update, \
|
| 75 |
+
self.get_params = optimizers.adam(lr)
|
| 76 |
+
|
| 77 |
+
self.opt_state = vmap(self.opt_init)(params)
|
| 78 |
+
self.prior_opt_state = vmap(self.opt_init)(params_prior)
|
| 79 |
+
self.key_opt_state = vmap(self.opt_init)(keys_3)
|
| 80 |
+
|
| 81 |
+
# Logger
|
| 82 |
+
self.itercount = itertools.count()
|
| 83 |
+
self.loss_log = []
|
| 84 |
+
|
| 85 |
+
# Define the forward pass
|
| 86 |
+
def net_forward(self, params, params_prior, inputs):
|
| 87 |
+
Y_pred = self.apply(params, inputs) + self.apply_prior(params_prior, inputs)
|
| 88 |
+
return Y_pred
|
| 89 |
+
|
| 90 |
+
# Evaluates predictions at test points
|
| 91 |
+
@partial(jit, static_argnums=(0,))
|
| 92 |
+
def posterior(self, params, inputs):
|
| 93 |
+
params, params_prior = params
|
| 94 |
+
samples = vmap(self.net_forward, (0, 0, 0))(params, params_prior, inputs)
|
| 95 |
+
return samples
|
| 96 |
+
|
| 97 |
+
##########################################################
|
| 98 |
+
##########################################################
|
| 99 |
+
##########################################################
|
| 100 |
+
|
| 101 |
+
# Helper functions
|
| 102 |
+
normalize = lambda x, mu, std: (x-mu)/std
|
| 103 |
+
|
| 104 |
+
n_remove = 4
|
| 105 |
+
ind_input = np.concatenate( (np.arange(26),n_remove+26+np.arange(26-n_remove),np.array([52,53,54,55])) )
|
| 106 |
+
dim_xH = ind_input.shape[0]
|
| 107 |
+
dim_xL = ind_input.shape[0]
|
| 108 |
+
|
| 109 |
+
ind_output_heat = np.arange(26)
|
| 110 |
+
ind_output_moist = n_remove+np.arange(26-n_remove)
|
| 111 |
+
|
| 112 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 113 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 114 |
+
|
| 115 |
+
ensemble_size = 1
|
| 116 |
+
i_ensemble = 0
|
| 117 |
+
layers_H = [dim_yL, 512, 512, 512, 512, 512, 512, 512, dim_yH]
|
| 118 |
+
layers_L = [dim_xL, 512, 512, 512, 512, 512, 512, 512, dim_yL]
|
| 119 |
+
|
| 120 |
+
id_step = 1 # 1 or 2 for instance in case we dont have enough RAM memory to make
|
| 121 |
+
# predictions for the whole test dataset at once.
|
| 122 |
+
n_run_param = 0
|
| 123 |
+
|
| 124 |
+
key = random.PRNGKey(n_run_param)
|
| 125 |
+
model_H = EnsembleRegression(layers_H, ensemble_size, key)
|
| 126 |
+
model_L = EnsembleRegression(layers_L, ensemble_size, key)
|
| 127 |
+
|
| 128 |
+
mu_MF_in = onp.load('norm/mu_X_CAM5.npy')[None,ind_input]
|
| 129 |
+
sigma_MF_in = onp.load('norm/sigma_X_CAM5.npy')[None,ind_input]
|
| 130 |
+
|
| 131 |
+
print('loading NN parameters')
|
| 132 |
+
params = []
|
| 133 |
+
params_prior = []
|
| 134 |
+
|
| 135 |
+
for i in range(len(layers_H)-1):
|
| 136 |
+
params.append( ( np.load('MF_param/MF_param_'+str(n_run_param)+'/HF_params_'+str(i)+'_'+str(0)+'.npy')[i_ensemble:i_ensemble+1,:,:] ,
|
| 137 |
+
np.load('MF_param/MF_param_'+str(n_run_param)+'/HF_params_'+str(i)+'_'+str(1)+'.npy')[i_ensemble:i_ensemble+1,:] ) )
|
| 138 |
+
params_prior.append( ( np.load('MF_param/MF_param_'+str(n_run_param)+'/HF_params_prior_'+str(i)+'_'+str(0)+'.npy')[i_ensemble:i_ensemble+1,:,:] ,
|
| 139 |
+
np.load('MF_param/MF_param_'+str(n_run_param)+'/HF_params_prior_'+str(i)+'_'+str(1)+'.npy')[i_ensemble:i_ensemble+1,:] ) )
|
| 140 |
+
|
| 141 |
+
opt_params_H = (params, params_prior)
|
| 142 |
+
|
| 143 |
+
params_L = []
|
| 144 |
+
params_prior_L = []
|
| 145 |
+
|
| 146 |
+
for i in range(len(layers_L)-1):
|
| 147 |
+
params_L.append( ( np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_'+str(i)+'_'+str(0)+'.npy')[i_ensemble:i_ensemble+1,:,:] ,
|
| 148 |
+
np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_'+str(i)+'_'+str(1)+'.npy')[i_ensemble:i_ensemble+1,:] ) )
|
| 149 |
+
params_prior_L.append( ( np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_prior_'+str(i)+'_'+str(0)+'.npy')[i_ensemble:i_ensemble+1,:,:] ,
|
| 150 |
+
np.load('MF_param/MF_param_'+str(n_run_param)+'/LF_params_prior_'+str(i)+'_'+str(1)+'.npy')[i_ensemble:i_ensemble+1,:] ) )
|
| 151 |
+
|
| 152 |
+
opt_params_L = (params_L, params_prior_L)
|
| 153 |
+
|
| 154 |
+
@jit
|
| 155 |
+
def predict_L(x):
|
| 156 |
+
# accepts and returns un-normalized data
|
| 157 |
+
x = np.tile(x[np.newaxis,:,:], (ensemble_size, 1, 1))
|
| 158 |
+
samples = model_L.posterior(opt_params_L, x)
|
| 159 |
+
return samples
|
| 160 |
+
|
| 161 |
+
@jit
|
| 162 |
+
def predict_H(x):
|
| 163 |
+
# accepts and returns un-normalized data
|
| 164 |
+
xL = normalize(x, mu_MF_in, sigma_MF_in)
|
| 165 |
+
x = predict_L(xL)
|
| 166 |
+
samples = model_H.posterior(opt_params_H, x)
|
| 167 |
+
return samples
|
| 168 |
+
|
| 169 |
+
##################################
|
| 170 |
+
############## test ##############
|
| 171 |
+
##################################
|
| 172 |
+
print('loading test')
|
| 173 |
+
if id_step == 1:
|
| 174 |
+
t = time.time()
|
| 175 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[:59387904,ind_input]
|
| 176 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 177 |
+
elif id_step == 2:
|
| 178 |
+
t = time.time()
|
| 179 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[59387904:,ind_input]
|
| 180 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 181 |
+
|
| 182 |
+
print('n_run_param : ', n_run_param, 'id_step : ', id_step, 'Computing pred')
|
| 183 |
+
t = time.time()
|
| 184 |
+
samples_test_H = predict_H(test_XH)
|
| 185 |
+
print('Computing pred', 'time (s):', time.time() - t)
|
| 186 |
+
print('Saving pred')
|
| 187 |
+
t = time.time()
|
| 188 |
+
np.save('MF_param/MF_param_'+str(n_run_param)+'/test_pred_'+str(id_step)+'.npy', samples_test_H)
|
| 189 |
+
print('Saving pred', 'time (s):', time.time() - t)
|
| 190 |
+
|
4_pred_RPN_SF.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Thu May 4 10:34:47 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE']='false'
|
| 11 |
+
|
| 12 |
+
from jax import numpy as np
|
| 13 |
+
from jax import vmap, jit, random
|
| 14 |
+
|
| 15 |
+
import numpy as onp
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
##########################################################
|
| 19 |
+
##########################################################
|
| 20 |
+
##########################################################
|
| 21 |
+
|
| 22 |
+
def leakyRELU(x):
|
| 23 |
+
return np.where(x > 0, x, x * 0.15)
|
| 24 |
+
|
| 25 |
+
def MLP(layers, activation=leakyRELU):
|
| 26 |
+
def init(rng_key):
|
| 27 |
+
def init_layer(key, d_in, d_out):
|
| 28 |
+
k1, k2 = random.split(key)
|
| 29 |
+
glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
|
| 30 |
+
W = glorot_stddev*random.normal(k1, (d_in, d_out))
|
| 31 |
+
b = np.zeros(d_out)
|
| 32 |
+
return W, b
|
| 33 |
+
key, *keys = random.split(rng_key, len(layers))
|
| 34 |
+
params = list(map(init_layer, keys, layers[:-1], layers[1:]))
|
| 35 |
+
return params
|
| 36 |
+
def apply(params, inputs):
|
| 37 |
+
for W, b in params[:-1]:
|
| 38 |
+
outputs = np.dot(inputs, W) + b
|
| 39 |
+
inputs = activation(outputs)
|
| 40 |
+
W, b = params[-1]
|
| 41 |
+
outputs = np.dot(inputs, W) + b
|
| 42 |
+
return outputs
|
| 43 |
+
return init, apply
|
| 44 |
+
|
| 45 |
+
##########################################################
|
| 46 |
+
##########################################################
|
| 47 |
+
##########################################################
|
| 48 |
+
|
| 49 |
+
from jax.example_libraries import optimizers
|
| 50 |
+
from functools import partial
|
| 51 |
+
import itertools
|
| 52 |
+
|
| 53 |
+
# Define the model
|
| 54 |
+
class EnsembleRegression:
|
| 55 |
+
def __init__(self, layers, ensemble_size, rng_key = random.PRNGKey(0)):
|
| 56 |
+
# Network initialization and evaluation functions
|
| 57 |
+
self.init, self.apply = MLP(layers)
|
| 58 |
+
self.init_prior, self.apply_prior = MLP(layers)
|
| 59 |
+
|
| 60 |
+
# Random keys
|
| 61 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 62 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 63 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 64 |
+
keys_3 = random.split(k2, ensemble_size)
|
| 65 |
+
|
| 66 |
+
# Initialize
|
| 67 |
+
params = vmap(self.init)(keys_1)
|
| 68 |
+
params_prior = vmap(self.init_prior)(keys_2)
|
| 69 |
+
|
| 70 |
+
# Use optimizers to set optimizer initialization and update functions
|
| 71 |
+
lr = optimizers.exponential_decay(1e-4, decay_steps=1000, decay_rate=0.999)
|
| 72 |
+
lr = optimizers.exponential_decay(0.000227, decay_steps=1000, decay_rate=0.999)
|
| 73 |
+
self.opt_init, \
|
| 74 |
+
self.opt_update, \
|
| 75 |
+
self.get_params = optimizers.adam(lr)
|
| 76 |
+
|
| 77 |
+
self.opt_state = vmap(self.opt_init)(params)
|
| 78 |
+
self.prior_opt_state = vmap(self.opt_init)(params_prior)
|
| 79 |
+
self.key_opt_state = vmap(self.opt_init)(keys_3)
|
| 80 |
+
|
| 81 |
+
# Logger
|
| 82 |
+
self.itercount = itertools.count()
|
| 83 |
+
self.loss_log = []
|
| 84 |
+
|
| 85 |
+
# Define the forward pass
|
| 86 |
+
def net_forward(self, params, params_prior, inputs):
|
| 87 |
+
Y_pred = self.apply(params, inputs) + self.apply_prior(params_prior, inputs)
|
| 88 |
+
return Y_pred
|
| 89 |
+
|
| 90 |
+
# Evaluates predictions at test points
|
| 91 |
+
@partial(jit, static_argnums=(0,))
|
| 92 |
+
def posterior(self, params, inputs):
|
| 93 |
+
params, params_prior = params
|
| 94 |
+
samples = vmap(self.net_forward, (0, 0, 0))(params, params_prior, inputs)
|
| 95 |
+
return samples
|
| 96 |
+
|
| 97 |
+
##########################################################
|
| 98 |
+
##########################################################
|
| 99 |
+
##########################################################
|
| 100 |
+
|
| 101 |
+
# Helper functions
|
| 102 |
+
normalize = lambda x, mu, std: (x-mu)/std
|
| 103 |
+
|
| 104 |
+
n_remove = 4
|
| 105 |
+
ind_input = np.concatenate( (np.arange(26),n_remove+26+np.arange(26-n_remove),np.array([52,53,54,55])) )
|
| 106 |
+
dim_xH = ind_input.shape[0]
|
| 107 |
+
dim_xL = ind_input.shape[0]
|
| 108 |
+
|
| 109 |
+
ind_output_heat = np.arange(26)
|
| 110 |
+
ind_output_moist = n_remove+np.arange(26-n_remove)
|
| 111 |
+
|
| 112 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 113 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 114 |
+
|
| 115 |
+
ensemble_size = 1
|
| 116 |
+
layers_H = [dim_xH, 512, 512, 512, 512, 512, 512, 512, dim_yH]
|
| 117 |
+
|
| 118 |
+
id_step = 1 # 1 or 2 for instance in case we dont have enough RAM memory to make
|
| 119 |
+
# predictions for the whole test dataset at once.
|
| 120 |
+
n_run_param = 0
|
| 121 |
+
|
| 122 |
+
key = random.PRNGKey(n_run_param)
|
| 123 |
+
model_H = EnsembleRegression(layers_H, ensemble_size, key)
|
| 124 |
+
|
| 125 |
+
mu_SF_in = onp.load('norm/mu_X_SPCAM5.npy')[None,None,ind_input]
|
| 126 |
+
sigma_SF_in = onp.load('norm/sigma_X_SPCAM5.npy')[None,None,ind_input]
|
| 127 |
+
|
| 128 |
+
print('loading NN parameters')
|
| 129 |
+
params = []
|
| 130 |
+
params_prior = []
|
| 131 |
+
for i in range(len(layers_H)-1):
|
| 132 |
+
params.append( ( np.load('SF_param/SF_param_'+str(n_run_param)+'/params_'+str(i)+'_'+str(0)+'.npy') ,
|
| 133 |
+
np.load('SF_param/SF_param_'+str(n_run_param)+'/params_'+str(i)+'_'+str(1)+'.npy') ) )
|
| 134 |
+
params_prior.append( ( np.load('SF_param/SF_param_'+str(n_run_param)+'/params_prior_'+str(i)+'_'+str(0)+'.npy') ,
|
| 135 |
+
np.load('SF_param/SF_param_'+str(n_run_param)+'/params_prior_'+str(i)+'_'+str(1)+'.npy') ) )
|
| 136 |
+
|
| 137 |
+
opt_params_H = (params, params_prior)
|
| 138 |
+
|
| 139 |
+
@jit
|
| 140 |
+
def predict_H(x):
|
| 141 |
+
# accepts and returns un-normalized data
|
| 142 |
+
x = np.tile(x[np.newaxis,:,:], (ensemble_size, 1, 1))
|
| 143 |
+
x = normalize(x, mu_SF_in, sigma_SF_in)
|
| 144 |
+
samples = model_H.posterior(opt_params_H, x)
|
| 145 |
+
return samples
|
| 146 |
+
|
| 147 |
+
##################################
|
| 148 |
+
############## test ##############
|
| 149 |
+
##################################
|
| 150 |
+
|
| 151 |
+
print('loading test')
|
| 152 |
+
if id_step == 1:
|
| 153 |
+
t = time.time()
|
| 154 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[:59387904,ind_input]
|
| 155 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 156 |
+
elif id_step == 2:
|
| 157 |
+
t = time.time()
|
| 158 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[59387904:,ind_input]
|
| 159 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 160 |
+
|
| 161 |
+
print('n_run_param : ', n_run_param, 'id_step : ', id_step, 'Computing pred')
|
| 162 |
+
t = time.time()
|
| 163 |
+
samples_test_H = predict_H(test_XH)
|
| 164 |
+
print('Computing pred', 'time (s):', time.time() - t)
|
| 165 |
+
print('Saving pred')
|
| 166 |
+
t = time.time()
|
| 167 |
+
np.save('SF_param/SF_param_'+str(n_run_param)+'/test_pred_'+str(id_step)+'.npy', samples_test_H)
|
| 168 |
+
print('Saving pred', 'time (s):', time.time() - t)
|
4_pred_RPN_det.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed May 3 17:19:00 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE']='false'
|
| 11 |
+
|
| 12 |
+
from jax import numpy as np
|
| 13 |
+
from jax import vmap, jit, random
|
| 14 |
+
|
| 15 |
+
import numpy as onp
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
##########################################################
|
| 19 |
+
##########################################################
|
| 20 |
+
##########################################################
|
| 21 |
+
|
| 22 |
+
def leakyRELU(x):
|
| 23 |
+
return np.where(x > 0, x, x * 0.15)
|
| 24 |
+
|
| 25 |
+
def MLP(layers, activation=leakyRELU):
|
| 26 |
+
def init(rng_key):
|
| 27 |
+
def init_layer(key, d_in, d_out):
|
| 28 |
+
k1, k2 = random.split(key)
|
| 29 |
+
glorot_stddev = 1. / np.sqrt((d_in + d_out) / 2.)
|
| 30 |
+
W = glorot_stddev*random.normal(k1, (d_in, d_out))
|
| 31 |
+
b = np.zeros(d_out)
|
| 32 |
+
return W, b
|
| 33 |
+
key, *keys = random.split(rng_key, len(layers))
|
| 34 |
+
params = list(map(init_layer, keys, layers[:-1], layers[1:]))
|
| 35 |
+
return params
|
| 36 |
+
def apply(params, inputs):
|
| 37 |
+
for W, b in params[:-1]:
|
| 38 |
+
outputs = np.dot(inputs, W) + b
|
| 39 |
+
inputs = activation(outputs)
|
| 40 |
+
W, b = params[-1]
|
| 41 |
+
outputs = np.dot(inputs, W) + b
|
| 42 |
+
return outputs
|
| 43 |
+
return init, apply
|
| 44 |
+
|
| 45 |
+
##########################################################
|
| 46 |
+
##########################################################
|
| 47 |
+
##########################################################
|
| 48 |
+
|
| 49 |
+
from jax.example_libraries import optimizers
|
| 50 |
+
from functools import partial
|
| 51 |
+
import itertools
|
| 52 |
+
|
| 53 |
+
# Define the model
|
| 54 |
+
class EnsembleRegression:
|
| 55 |
+
def __init__(self, layers, ensemble_size, rng_key = random.PRNGKey(0)):
|
| 56 |
+
# Network initialization and evaluation functions
|
| 57 |
+
self.init, self.apply = MLP(layers)
|
| 58 |
+
self.init_prior, self.apply_prior = MLP(layers)
|
| 59 |
+
|
| 60 |
+
# Random keys
|
| 61 |
+
k1, k2, k3 = random.split(rng_key, 3)
|
| 62 |
+
keys_1 = random.split(k1, ensemble_size)
|
| 63 |
+
keys_2 = random.split(k2, ensemble_size)
|
| 64 |
+
keys_3 = random.split(k2, ensemble_size)
|
| 65 |
+
|
| 66 |
+
# Initialize
|
| 67 |
+
params = vmap(self.init)(keys_1)
|
| 68 |
+
params_prior = vmap(self.init_prior)(keys_2)
|
| 69 |
+
|
| 70 |
+
# Use optimizers to set optimizer initialization and update functions
|
| 71 |
+
lr = optimizers.exponential_decay(1e-4, decay_steps=1000, decay_rate=0.999)
|
| 72 |
+
lr = optimizers.exponential_decay(0.000227, decay_steps=1000, decay_rate=0.999)
|
| 73 |
+
self.opt_init, \
|
| 74 |
+
self.opt_update, \
|
| 75 |
+
self.get_params = optimizers.adam(lr)
|
| 76 |
+
|
| 77 |
+
self.opt_state = vmap(self.opt_init)(params)
|
| 78 |
+
self.prior_opt_state = vmap(self.opt_init)(params_prior)
|
| 79 |
+
self.key_opt_state = vmap(self.opt_init)(keys_3)
|
| 80 |
+
|
| 81 |
+
# Logger
|
| 82 |
+
self.itercount = itertools.count()
|
| 83 |
+
self.loss_log = []
|
| 84 |
+
|
| 85 |
+
# Define the forward pass
|
| 86 |
+
def net_forward(self, params, params_prior, inputs):
|
| 87 |
+
Y_pred = self.apply(params, inputs) + self.apply_prior(params_prior, inputs)
|
| 88 |
+
return Y_pred
|
| 89 |
+
|
| 90 |
+
# Evaluates predictions at test points
|
| 91 |
+
@partial(jit, static_argnums=(0,))
|
| 92 |
+
def posterior(self, params, inputs):
|
| 93 |
+
params, params_prior = params
|
| 94 |
+
samples = vmap(self.net_forward, (0, 0, 0))(params, params_prior, inputs)
|
| 95 |
+
return samples
|
| 96 |
+
|
| 97 |
+
##########################################################
|
| 98 |
+
##########################################################
|
| 99 |
+
##########################################################
|
| 100 |
+
|
| 101 |
+
# Helper functions
|
| 102 |
+
normalize = lambda x, mu, std: (x-mu)/std
|
| 103 |
+
|
| 104 |
+
n_remove = 4
|
| 105 |
+
ind_input = np.concatenate( (np.arange(26),n_remove+26+np.arange(26-n_remove),np.array([52,53,54,55])) )
|
| 106 |
+
dim_xH = ind_input.shape[0]
|
| 107 |
+
dim_xL = ind_input.shape[0]
|
| 108 |
+
|
| 109 |
+
ind_output_heat = np.arange(26)
|
| 110 |
+
ind_output_moist = n_remove+np.arange(26-n_remove)
|
| 111 |
+
|
| 112 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 113 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 114 |
+
|
| 115 |
+
ensemble_size = 1
|
| 116 |
+
layers_H = [dim_xH, 512, 512, 512, 512, 512, 512, 512, dim_yH]
|
| 117 |
+
|
| 118 |
+
id_step = 1 # 1 or 2 for instance in case we dont have enough RAM memory to make
|
| 119 |
+
# predictions for the whole test dataset at once.
|
| 120 |
+
|
| 121 |
+
key = random.PRNGKey(0)
|
| 122 |
+
model_H = EnsembleRegression(layers_H, ensemble_size, key)
|
| 123 |
+
|
| 124 |
+
mu_SF_in = onp.load('norm/mu_X_SPCAM5.npy')[None,None,ind_input]
|
| 125 |
+
sigma_SF_in = onp.load('norm/sigma_X_SPCAM5.npy')[None,None,ind_input]
|
| 126 |
+
|
| 127 |
+
print('loading NN parameters')
|
| 128 |
+
params = []
|
| 129 |
+
params_prior = []
|
| 130 |
+
for i in range(len(layers_H)-1):
|
| 131 |
+
params.append( ( np.load('SF_param/SF_param_det/params_'+str(i)+'_'+str(0)+'.npy') ,
|
| 132 |
+
np.load('SF_param/SF_param_det/params_'+str(i)+'_'+str(1)+'.npy') ) )
|
| 133 |
+
params_prior.append( ( np.load('SF_param/SF_param_det/params_prior_'+str(i)+'_'+str(0)+'.npy') ,
|
| 134 |
+
np.load('SF_param/SF_param_det/params_prior_'+str(i)+'_'+str(1)+'.npy') ) )
|
| 135 |
+
|
| 136 |
+
opt_params_H = (params, params_prior)
|
| 137 |
+
|
| 138 |
+
@jit
|
| 139 |
+
def predict_H(x):
|
| 140 |
+
# accepts and returns un-normalized data
|
| 141 |
+
x = np.tile(x[np.newaxis,:,:], (ensemble_size, 1, 1))
|
| 142 |
+
x = normalize(x, mu_SF_in, sigma_SF_in)
|
| 143 |
+
samples = model_H.posterior(opt_params_H, x)
|
| 144 |
+
return samples
|
| 145 |
+
|
| 146 |
+
##################################
|
| 147 |
+
############## test ##############
|
| 148 |
+
##################################
|
| 149 |
+
|
| 150 |
+
print('loading test')
|
| 151 |
+
if id_step == 1:
|
| 152 |
+
t = time.time()
|
| 153 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[:59387904,ind_input]
|
| 154 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 155 |
+
elif id_step == 2:
|
| 156 |
+
t = time.time()
|
| 157 |
+
test_XH = onp.load('data_SPCAM5_4K/all_inputs.npy')[59387904:,ind_input]
|
| 158 |
+
print('test loaded', 'time (s):', time.time() - t)
|
| 159 |
+
|
| 160 |
+
print('det NN, id_step : ', id_step, 'Computing pred')
|
| 161 |
+
t = time.time()
|
| 162 |
+
samples_test_H = predict_H(test_XH)
|
| 163 |
+
print('Computing pred', 'time (s):', time.time() - t)
|
| 164 |
+
print('Saving pred')
|
| 165 |
+
t = time.time()
|
| 166 |
+
np.save('SF_param/SF_param_det/test_pred_'+str(id_step)+'.npy', samples_test_H)
|
| 167 |
+
print('Saving pred', 'time (s):', time.time() - t)
|
5_mean_std_RPN_LF.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Fri May 26 23:27:52 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as onp
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
n_remove = 4
|
| 13 |
+
ind_input = onp.concatenate( (onp.arange(26),n_remove+26+onp.arange(26-n_remove),onp.array([52,53,54,55])) )
|
| 14 |
+
dim_xH = ind_input.shape[0]
|
| 15 |
+
dim_xL = ind_input.shape[0]
|
| 16 |
+
|
| 17 |
+
ind_output_heat = onp.arange(26)
|
| 18 |
+
ind_output_moist = n_remove+onp.arange(26-n_remove)
|
| 19 |
+
|
| 20 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 21 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 22 |
+
|
| 23 |
+
mu_MF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 24 |
+
onp.load('norm/mu_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 25 |
+
sigma_MF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 26 |
+
onp.load('norm/sigma_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 27 |
+
|
| 28 |
+
is_comp_mean = 1
|
| 29 |
+
id_step = 2
|
| 30 |
+
N_rpn = 128
|
| 31 |
+
print('loading data')
|
| 32 |
+
|
| 33 |
+
if is_comp_mean == 1: # RPN mean computation
|
| 34 |
+
samples_test_H = onp.load('MF_param/MF_param_'+str(0)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:]/N_rpn
|
| 35 |
+
t = time.time()
|
| 36 |
+
for i in range(N_rpn-1):
|
| 37 |
+
print(id_step,i,N_rpn-1)
|
| 38 |
+
samples_test_H = samples_test_H + onp.load('MF_param/MF_param_'+str(i+1)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:]/N_rpn
|
| 39 |
+
print(time.time()-t)
|
| 40 |
+
t = time.time()
|
| 41 |
+
samples_test_H = mu_MF_out + sigma_MF_out * samples_test_H
|
| 42 |
+
onp.save('MF_param/mean_RPN_LF_'+str(id_step)+'.npy',samples_test_H)
|
| 43 |
+
else: # RPN std computation
|
| 44 |
+
mu = onp.load('MF_param/mean_RPN_LF_'+str(id_step)+'.npy')
|
| 45 |
+
|
| 46 |
+
sigma = (mu_MF_out + onp.load('MF_param/MF_param_'+str(0)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:] * sigma_MF_out - mu)**2/N_rpn
|
| 47 |
+
t = time.time()
|
| 48 |
+
for i in range(N_rpn-1):
|
| 49 |
+
print(id_step,i,N_rpn-1)
|
| 50 |
+
sigma = sigma + (mu_MF_out + onp.load('MF_param/MF_param_'+str(i+1)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:] * sigma_MF_out - mu)**2/N_rpn
|
| 51 |
+
print(time.time()-t)
|
| 52 |
+
t = time.time()
|
| 53 |
+
sigma = onp.sqrt(sigma)
|
| 54 |
+
onp.save('MF_param/std_RPN_LF_'+str(id_step)+'.npy',sigma)
|
| 55 |
+
|
5_mean_std_RPN_MF.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Thu May 4 10:20:14 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as onp
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
n_remove = 4
|
| 13 |
+
ind_output_heat = onp.arange(26)
|
| 14 |
+
ind_output_moist = n_remove+onp.arange(26-n_remove)
|
| 15 |
+
|
| 16 |
+
is_MF = 1
|
| 17 |
+
is_SF = 0
|
| 18 |
+
is_LF = 0
|
| 19 |
+
|
| 20 |
+
if is_MF == 1:
|
| 21 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 22 |
+
onp.load('norm/mu_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 23 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 24 |
+
onp.load('norm/sigma_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 25 |
+
|
| 26 |
+
is_comp_mean = 1
|
| 27 |
+
id_step = 1
|
| 28 |
+
N_rpn = 128
|
| 29 |
+
print('loading data')
|
| 30 |
+
|
| 31 |
+
if is_comp_mean == 1: # RPN mean computation
|
| 32 |
+
samples_test_H = onp.load('MF_param/MF_param_'+str(0)+'/test_pred_'+str(id_step)+'.npy')[0,:,:]/N_rpn
|
| 33 |
+
t = time.time()
|
| 34 |
+
for i in range(N_rpn-1):
|
| 35 |
+
print(id_step,i,N_rpn-1)
|
| 36 |
+
samples_test_H = samples_test_H +onp.load('MF_param/MF_param_'+str(i+1)+'/test_pred_'+str(id_step)+'.npy')[0,:,:]/N_rpn
|
| 37 |
+
print(time.time()-t)
|
| 38 |
+
t = time.time()
|
| 39 |
+
samples_test_H = mu_SF_out + sigma_SF_out * samples_test_H
|
| 40 |
+
onp.save('MF_param/mean_RPN_MF_'+str(id_step)+'.npy',samples_test_H)
|
| 41 |
+
else: # RPN std computation
|
| 42 |
+
mu = onp.load('MF_param/mean_RPN_MF_'+str(id_step)+'.npy')
|
| 43 |
+
|
| 44 |
+
sigma = (mu_SF_out + onp.load('MF_param/MF_param_'+str(0)+'/test_pred_'+str(id_step)+'.npy')[0,:,:] * sigma_SF_out - mu)**2/N_rpn
|
| 45 |
+
t = time.time()
|
| 46 |
+
for i in range(N_rpn-1):
|
| 47 |
+
print(id_step,i,N_rpn-1)
|
| 48 |
+
sigma = sigma + (mu_SF_out + onp.load('MF_param/MF_param_'+str(0)+'/test_pred_'+str(id_step)+'.npy')[0,:,:] * sigma_SF_out - mu)**2/N_rpn
|
| 49 |
+
print(time.time()-t)
|
| 50 |
+
t = time.time()
|
| 51 |
+
sigma = onp.sqrt(sigma)
|
| 52 |
+
onp.save('MF_param/std_RPN_MF_'+str(id_step)+'.npy',sigma)
|
| 53 |
+
|
| 54 |
+
if is_SF == 1:
|
| 55 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_SPCAM5.npy')[None,ind_output_heat],
|
| 56 |
+
onp.load('norm/mu_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1)
|
| 57 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_SPCAM5.npy')[None,ind_output_heat],
|
| 58 |
+
onp.load('norm/sigma_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1)
|
| 59 |
+
|
| 60 |
+
is_comp_mean = 1
|
| 61 |
+
N_rpn = 128
|
| 62 |
+
print('loading data')
|
| 63 |
+
|
| 64 |
+
if is_comp_mean == 1: # RPN mean computation
|
| 65 |
+
samples_test_H = onp.concatenate( (onp.load('SF_param/SF_param_'+str(0)+'/test_pred_1.npy'),
|
| 66 |
+
onp.load('SF_param/SF_param_'+str(0)+'/test_pred_2.npy')), axis=1)[0,:,:]/N_rpn
|
| 67 |
+
t = time.time()
|
| 68 |
+
for i in range(N_rpn-1):
|
| 69 |
+
print(i,N_rpn-1)
|
| 70 |
+
samples_test_H = samples_test_H + onp.concatenate( (onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_1.npy'),
|
| 71 |
+
onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_2.npy')), axis=1)[0,:,:]/N_rpn
|
| 72 |
+
print(time.time()-t)
|
| 73 |
+
t = time.time()
|
| 74 |
+
samples_test_H = mu_SF_out + sigma_SF_out * samples_test_H
|
| 75 |
+
onp.save('SF_param/mean_RPN_SF.npy',samples_test_H)
|
| 76 |
+
else: # RPN std computation
|
| 77 |
+
mu = onp.load('SF_param/mean_RPN_SF.npy')
|
| 78 |
+
sigma = (mu_SF_out + onp.concatenate( (onp.load('SF_param/SF_param_'+str(0)+'/test_pred_1.npy'),
|
| 79 |
+
onp.load('SF_param/SF_param_'+str(0)+'/test_pred_2.npy')), axis=1)[0,:,:] * sigma_SF_out - mu)**2/N_rpn
|
| 80 |
+
t = time.time()
|
| 81 |
+
for i in range(N_rpn-1):
|
| 82 |
+
print(i,N_rpn-1)
|
| 83 |
+
sigma = sigma + (mu_SF_out + onp.concatenate( (onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_1.npy'),
|
| 84 |
+
onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_2.npy')), axis=1)[0,:,:] * sigma_SF_out - mu)**2/N_rpn
|
| 85 |
+
print(time.time()-t)
|
| 86 |
+
t = time.time()
|
| 87 |
+
sigma = onp.sqrt(sigma)
|
| 88 |
+
onp.save('SF_param/std_RPN_SF.npy',sigma)
|
| 89 |
+
|
| 90 |
+
if is_LF == 1:
|
| 91 |
+
mu_MF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 92 |
+
onp.load('norm/mu_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 93 |
+
sigma_MF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 94 |
+
onp.load('norm/sigma_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 95 |
+
|
| 96 |
+
is_comp_mean = 1
|
| 97 |
+
id_step = 2
|
| 98 |
+
N_rpn = 128
|
| 99 |
+
print('loading data')
|
| 100 |
+
|
| 101 |
+
if is_comp_mean == 1: # RPN mean computation
|
| 102 |
+
samples_test_H = onp.load('MF_param/MF_param_'+str(0)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:]/N_rpn
|
| 103 |
+
t = time.time()
|
| 104 |
+
for i in range(N_rpn-1):
|
| 105 |
+
print(id_step,i,N_rpn-1)
|
| 106 |
+
samples_test_H = samples_test_H + onp.load('MF_param/MF_param_'+str(i+1)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:]/N_rpn
|
| 107 |
+
print(time.time()-t)
|
| 108 |
+
t = time.time()
|
| 109 |
+
samples_test_H = mu_MF_out + sigma_MF_out * samples_test_H
|
| 110 |
+
onp.save('MF_param/mean_RPN_LF_'+str(id_step)+'.npy',samples_test_H)
|
| 111 |
+
else: # RPN std computation
|
| 112 |
+
mu = onp.load('MF_param/mean_RPN_LF_'+str(id_step)+'.npy')
|
| 113 |
+
|
| 114 |
+
sigma = (mu_MF_out + onp.load('MF_param/MF_param_'+str(0)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:] * sigma_MF_out - mu)**2/N_rpn
|
| 115 |
+
t = time.time()
|
| 116 |
+
for i in range(N_rpn-1):
|
| 117 |
+
print(id_step,i,N_rpn-1)
|
| 118 |
+
sigma = sigma + (mu_MF_out + onp.load('MF_param/MF_param_'+str(i+1)+'/LF_test_pred_'+str(id_step)+'.npy')[0,:,:] * sigma_MF_out - mu)**2/N_rpn
|
| 119 |
+
print(time.time()-t)
|
| 120 |
+
t = time.time()
|
| 121 |
+
sigma = onp.sqrt(sigma)
|
| 122 |
+
onp.save('MF_param/std_RPN_LF_'+str(id_step)+'.npy',sigma)
|
| 123 |
+
|
5_mean_std_RPN_SF.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Thu May 4 20:12:05 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as onp
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
n_remove = 4
|
| 13 |
+
ind_input = onp.concatenate( (onp.arange(26),n_remove+26+onp.arange(26-n_remove),onp.array([52,53,54,55])) )
|
| 14 |
+
dim_xH = ind_input.shape[0]
|
| 15 |
+
dim_xL = ind_input.shape[0]
|
| 16 |
+
|
| 17 |
+
ind_output_heat = onp.arange(26)
|
| 18 |
+
ind_output_moist = n_remove+onp.arange(26-n_remove)
|
| 19 |
+
|
| 20 |
+
dim_yH = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 21 |
+
dim_yL = ind_output_heat.shape[0]+ind_output_moist.shape[0]
|
| 22 |
+
|
| 23 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_SPCAM5.npy')[None,ind_output_heat],
|
| 24 |
+
onp.load('norm/mu_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1)
|
| 25 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_SPCAM5.npy')[None,ind_output_heat],
|
| 26 |
+
onp.load('norm/sigma_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1)
|
| 27 |
+
|
| 28 |
+
is_comp_mean = 1
|
| 29 |
+
N_rpn = 128
|
| 30 |
+
print('loading data')
|
| 31 |
+
|
| 32 |
+
if is_comp_mean == 1: # RPN mean computation
|
| 33 |
+
samples_test_H = onp.concatenate( (onp.load('SF_param/SF_param_'+str(0)+'/test_pred_1.npy'),
|
| 34 |
+
onp.load('SF_param/SF_param_'+str(0)+'/test_pred_2.npy')), axis=1)[0,:,:]/N_rpn
|
| 35 |
+
t = time.time()
|
| 36 |
+
for i in range(N_rpn-1):
|
| 37 |
+
print(i,N_rpn-1)
|
| 38 |
+
samples_test_H = samples_test_H + onp.concatenate( (onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_1.npy'),
|
| 39 |
+
onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_2.npy')), axis=1)[0,:,:]/N_rpn
|
| 40 |
+
print(time.time()-t)
|
| 41 |
+
t = time.time()
|
| 42 |
+
samples_test_H = mu_SF_out + sigma_SF_out * samples_test_H
|
| 43 |
+
onp.save('SF_param/mean_RPN_SF.npy',samples_test_H)
|
| 44 |
+
else: # RPN std computation
|
| 45 |
+
mu = onp.load('SF_param/mean_RPN_SF.npy')
|
| 46 |
+
sigma = (mu_SF_out + onp.concatenate( (onp.load('SF_param/SF_param_'+str(0)+'/test_pred_1.npy'),
|
| 47 |
+
onp.load('SF_param/SF_param_'+str(0)+'/test_pred_2.npy')), axis=1)[0,:,:] * sigma_SF_out - mu)**2/N_rpn
|
| 48 |
+
t = time.time()
|
| 49 |
+
for i in range(N_rpn-1):
|
| 50 |
+
print(i,N_rpn-1)
|
| 51 |
+
sigma = sigma + (mu_SF_out + onp.concatenate( (onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_1.npy'),
|
| 52 |
+
onp.load('SF_param/SF_param_'+str(i+1)+'/test_pred_2.npy')), axis=1)[0,:,:] * sigma_SF_out - mu)**2/N_rpn
|
| 53 |
+
print(time.time()-t)
|
| 54 |
+
t = time.time()
|
| 55 |
+
sigma = onp.sqrt(sigma)
|
| 56 |
+
onp.save('SF_param/std_RPN_SF.npy',sigma)
|
| 57 |
+
|
6_reshape_pred_RPN.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Sat May 27 20:02:33 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
import numpy as onp
|
| 9 |
+
|
| 10 |
+
lat = 96
|
| 11 |
+
lon = 144
|
| 12 |
+
dim_y = 48
|
| 13 |
+
|
| 14 |
+
is_create_Npts_per_file = 0
|
| 15 |
+
|
| 16 |
+
is_det = 0
|
| 17 |
+
is_rpn_SF = 0
|
| 18 |
+
is_rpn_MF = 0
|
| 19 |
+
is_test_data = 0
|
| 20 |
+
is_LF = 1
|
| 21 |
+
|
| 22 |
+
test_SPCAM =['2003_02_06','2003_02_12','2003_02_18','2003_02_24','2003_02_28',
|
| 23 |
+
'2003_03_06','2003_03_12','2003_03_18','2003_03_24','2003_03_30','2003_03_31',
|
| 24 |
+
'2003_04_06','2003_04_12','2003_04_18','2003_04_24','2003_04_30',
|
| 25 |
+
'2003_05_06','2003_05_12','2003_05_18','2003_05_24','2003_05_30','2003_05_31',
|
| 26 |
+
'2003_06_06','2003_06_12','2003_06_18','2003_06_24','2003_06_30',
|
| 27 |
+
'2003_07_06','2003_07_12','2003_07_18','2003_07_24','2003_07_30','2003_07_31',
|
| 28 |
+
'2003_08_06','2003_08_12','2003_08_18','2003_08_24','2003_08_30','2003_08_31',
|
| 29 |
+
'2003_09_06','2003_09_12','2003_09_18','2003_09_24','2003_09_30',
|
| 30 |
+
'2003_10_06','2003_10_12','2003_10_18','2003_10_24','2003_10_30','2003_10_31',
|
| 31 |
+
'2003_11_06','2003_11_12','2003_11_18','2003_11_24','2003_11_30',
|
| 32 |
+
'2003_12_06','2003_12_12','2003_12_18','2003_12_24','2003_12_30','2003_12_31',
|
| 33 |
+
'2004_01_06','2004_01_12','2004_01_18','2004_01_24','2004_01_30','2004_01_31']
|
| 34 |
+
|
| 35 |
+
if is_create_Npts_per_file == 1:
|
| 36 |
+
print('create Npts_per_file')
|
| 37 |
+
Npts_per_file = []
|
| 38 |
+
for i in range(len(test_SPCAM)):
|
| 39 |
+
Npts_per_file.append( onp.load('data_SPCAM5_4K/inputs_'+test_SPCAM[i]+'.npy').shape[0] )
|
| 40 |
+
Npts_per_file = onp.array(Npts_per_file)
|
| 41 |
+
onp.save('data_SPCAM5_4K/Npts_per_file_test.npy',Npts_per_file)
|
| 42 |
+
print('Npts_per_file created')
|
| 43 |
+
else:
|
| 44 |
+
Npts_per_file = onp.load('data_SPCAM5_4K/Npts_per_file_test.npy')
|
| 45 |
+
|
| 46 |
+
def reshape_loc_onp(pred, dim_y):
|
| 47 |
+
pred_loc = pred[:Npts_per_file[0],:]
|
| 48 |
+
pred = pred[Npts_per_file[0]:,:]
|
| 49 |
+
nt_total = pred_loc.shape[0]//(lat*lon)
|
| 50 |
+
pred_array = onp.reshape(pred_loc.T, (dim_y,nt_total,lat,lon))
|
| 51 |
+
|
| 52 |
+
for i in range(len(test_SPCAM)-1):
|
| 53 |
+
print(i,len(test_SPCAM)-1)
|
| 54 |
+
pred_loc = pred[:Npts_per_file[i+1],:]
|
| 55 |
+
pred = pred[Npts_per_file[i+1]:,:]
|
| 56 |
+
nt_total = pred_loc.shape[0]//(lat*lon)
|
| 57 |
+
|
| 58 |
+
pred_array = onp.concatenate( (pred_array, onp.reshape(pred_loc.T, (dim_y,nt_total,lat,lon))),axis=1)
|
| 59 |
+
return pred_array
|
| 60 |
+
|
| 61 |
+
if is_det == 1:
|
| 62 |
+
print('load and reshape det')
|
| 63 |
+
n_run = 128
|
| 64 |
+
case_var = 'all'
|
| 65 |
+
samples_test_H = reshape_loc_onp( onp.concatenate( (onp.load('SF_param/SF_param_det/test_pred_1.npy')[0,:,:],
|
| 66 |
+
onp.load('SF_param/SF_param_det/test_pred_2.npy')[0,:,:]), axis=0 ), dim_y )
|
| 67 |
+
onp.save('SF_param/SF_param_det/test_pred_reshaped.npy', samples_test_H)
|
| 68 |
+
|
| 69 |
+
if is_LF == 1:
|
| 70 |
+
print('load and reshape det')
|
| 71 |
+
|
| 72 |
+
mean_rpn_LF = reshape_loc_onp( onp.concatenate( (onp.load('MF_param/mean_RPN_LF_1.npy'),
|
| 73 |
+
onp.load('MF_param/mean_RPN_LF_2.npy')), axis=0), dim_y ) # dim_y x nt x lon x lat
|
| 74 |
+
std_rpn_LF = reshape_loc_onp( onp.concatenate( (onp.load('MF_param/std_RPN_LF_1.npy'),
|
| 75 |
+
onp.load('MF_param/std_RPN_LF_2.npy')), axis=0), dim_y ) # dim_y x nt x lon x lat
|
| 76 |
+
|
| 77 |
+
onp.save('MF_param/mean_RPN_LF_reshaped.npy', mean_rpn_LF)
|
| 78 |
+
onp.save('MF_param/std_RPN_LF_reshaped.npy', std_rpn_LF)
|
| 79 |
+
|
| 80 |
+
if is_rpn_SF == 1:
|
| 81 |
+
print('load and reshape rpn SF')
|
| 82 |
+
mean_rpn = reshape_loc_onp( onp.load('SF_param/mean_RPN_SF.npy'), dim_y ) # dim_y x nt x lon x lat
|
| 83 |
+
std_rpn = reshape_loc_onp( onp.load('SF_param/std_RPN_SF.npy'), dim_y )
|
| 84 |
+
|
| 85 |
+
onp.save('SF_param/mean_RPN_SF_reshaped.npy', mean_rpn)
|
| 86 |
+
onp.save('SF_param/std_RPN_SF_reshaped.npy', std_rpn)
|
| 87 |
+
|
| 88 |
+
if is_rpn_MF == 1:
|
| 89 |
+
print('load and reshape rpn MF')
|
| 90 |
+
mean_rpn_MF = reshape_loc_onp( onp.concatenate( (onp.load('MF_param/mean_RPN_MF_1.npy'),
|
| 91 |
+
onp.load('MF_param/mean_RPN_MF_2.npy')), axis=0), dim_y ) # dim_y x nt x lon x lat
|
| 92 |
+
std_rpn_MF = reshape_loc_onp( onp.concatenate( (onp.load('MF_param/std_RPN_MF_1.npy'),
|
| 93 |
+
onp.load('MF_param/std_RPN_MF_2.npy')), axis=0), dim_y ) # dim_y x nt x lon x lat
|
| 94 |
+
|
| 95 |
+
onp.save('MF_param/mean_RPN_MF_reshaped.npy', mean_rpn_MF)
|
| 96 |
+
onp.save('MF_param/std_RPN_MF_reshaped.npy', std_rpn_MF)
|
| 97 |
+
|
| 98 |
+
if is_test_data == 1:
|
| 99 |
+
print('load and reshape test')
|
| 100 |
+
|
| 101 |
+
n_remove = 4
|
| 102 |
+
ind_output_heat = onp.arange(26)
|
| 103 |
+
ind_output_moist = n_remove+onp.arange(26-n_remove)
|
| 104 |
+
test_yH = onp.concatenate((onp.load('data_SPCAM5_4K/all_outputs_heat.npy')[:,ind_output_heat],
|
| 105 |
+
onp.load('data_SPCAM5_4K/all_outputs_moist.npy')[:,ind_output_moist]),axis=1)
|
| 106 |
+
|
| 107 |
+
test_yH = reshape_loc_onp(test_yH, dim_y)
|
| 108 |
+
|
| 109 |
+
onp.save('data_SPCAM5_4K/all_outputs_reshaped.npy', test_yH)
|
| 110 |
+
|
7_global_crps.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Mon Aug 7 14:20:34 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as onp
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
from matplotlib import pyplot as plt
|
| 13 |
+
plt.close('all')
|
| 14 |
+
|
| 15 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 16 |
+
plt.rc('font', family='serif')
|
| 17 |
+
plt.rcParams.update({'font.size': 32,
|
| 18 |
+
'lines.linewidth': 2,
|
| 19 |
+
'axes.labelsize': 32,
|
| 20 |
+
'axes.titlesize': 32,
|
| 21 |
+
'xtick.labelsize': 32,
|
| 22 |
+
'ytick.labelsize': 32,
|
| 23 |
+
'legend.fontsize': 32,
|
| 24 |
+
'axes.linewidth': 2,
|
| 25 |
+
"pgf.texsystem": "pdflatex"
|
| 26 |
+
})
|
| 27 |
+
|
| 28 |
+
dim_y = 48
|
| 29 |
+
dim_heat = 26
|
| 30 |
+
dim_moist = 22
|
| 31 |
+
n_remove = 4
|
| 32 |
+
ind_input = onp.concatenate( (onp.arange(26),n_remove+26+onp.arange(26-n_remove),onp.array([52,53,54,55])) )
|
| 33 |
+
dim_xH = ind_input.shape[0]
|
| 34 |
+
dim_xL = ind_input.shape[0]
|
| 35 |
+
|
| 36 |
+
ind_output_heat = onp.arange(26)
|
| 37 |
+
ind_output_moist = n_remove+onp.arange(26-n_remove)
|
| 38 |
+
|
| 39 |
+
mu_error_out = onp.concatenate((onp.zeros((1,dim_heat),dtype=onp.float32),
|
| 40 |
+
onp.zeros((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 41 |
+
|
| 42 |
+
sigma_error_out = onp.concatenate((1/1004.6*onp.ones((1,dim_heat),dtype=onp.float32),
|
| 43 |
+
1/2.26e6*onp.ones((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 44 |
+
|
| 45 |
+
is_reshape_single_pred = 1
|
| 46 |
+
|
| 47 |
+
is_MF = 0
|
| 48 |
+
is_LF = 0
|
| 49 |
+
is_SF = 1
|
| 50 |
+
|
| 51 |
+
if is_reshape_single_pred == 1:
|
| 52 |
+
|
| 53 |
+
test_SPCAM =['2003_02_06','2003_02_12','2003_02_18','2003_02_24','2003_02_28',
|
| 54 |
+
'2003_03_06','2003_03_12','2003_03_18','2003_03_24','2003_03_30','2003_03_31',
|
| 55 |
+
'2003_04_06','2003_04_12','2003_04_18','2003_04_24','2003_04_30',
|
| 56 |
+
'2003_05_06','2003_05_12','2003_05_18','2003_05_24','2003_05_30','2003_05_31',
|
| 57 |
+
'2003_06_06','2003_06_12','2003_06_18','2003_06_24','2003_06_30',
|
| 58 |
+
'2003_07_06','2003_07_12','2003_07_18','2003_07_24','2003_07_30','2003_07_31',
|
| 59 |
+
'2003_08_06','2003_08_12','2003_08_18','2003_08_24','2003_08_30','2003_08_31',
|
| 60 |
+
'2003_09_06','2003_09_12','2003_09_18','2003_09_24','2003_09_30',
|
| 61 |
+
'2003_10_06','2003_10_12','2003_10_18','2003_10_24','2003_10_30','2003_10_31',
|
| 62 |
+
'2003_11_06','2003_11_12','2003_11_18','2003_11_24','2003_11_30',
|
| 63 |
+
'2003_12_06','2003_12_12','2003_12_18','2003_12_24','2003_12_30','2003_12_31',
|
| 64 |
+
'2004_01_06','2004_01_12','2004_01_18','2004_01_24','2004_01_30','2004_01_31']
|
| 65 |
+
|
| 66 |
+
Npts_per_file = onp.load('data_SPCAM5_4K/Npts_per_file_test.npy')
|
| 67 |
+
|
| 68 |
+
def reshape_loc_onp(pred, dim_y):
|
| 69 |
+
pred_loc = pred[:Npts_per_file[0],:]
|
| 70 |
+
pred = pred[Npts_per_file[0]:,:]
|
| 71 |
+
nt_total = pred_loc.shape[0]//(lat*lon)
|
| 72 |
+
pred_array = onp.reshape(pred_loc.T, (dim_y,nt_total,lat,lon))
|
| 73 |
+
|
| 74 |
+
for i in range(len(test_SPCAM)-1):
|
| 75 |
+
print(i,len(test_SPCAM)-1)
|
| 76 |
+
pred_loc = pred[:Npts_per_file[i+1],:]
|
| 77 |
+
pred = pred[Npts_per_file[i+1]:,:]
|
| 78 |
+
nt_total = pred_loc.shape[0]//(lat*lon)
|
| 79 |
+
|
| 80 |
+
pred_array = onp.concatenate( (pred_array, onp.reshape(pred_loc.T, (dim_y,nt_total,lat,lon))),axis=1)
|
| 81 |
+
return pred_array
|
| 82 |
+
|
| 83 |
+
case_var = 'all'
|
| 84 |
+
lat = 96
|
| 85 |
+
lon = 144
|
| 86 |
+
N_dt_day = 24 # we have a dt=1hour
|
| 87 |
+
def daily_avg(test):
|
| 88 |
+
test_daily = []
|
| 89 |
+
N_time_steps = test.shape[1]
|
| 90 |
+
for i in range(test.shape[0]):
|
| 91 |
+
test_daily.append( onp.mean( test[i,:,:,:].reshape( (N_time_steps//N_dt_day, N_dt_day, lat, lon) ), axis=1 ) )
|
| 92 |
+
return onp.array(test_daily) # dim_y x N_day x lat x lon
|
| 93 |
+
|
| 94 |
+
if is_MF == 1 or is_LF == 1:
|
| 95 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 96 |
+
onp.load('norm/mu_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 97 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_CAM5.npy')[None,ind_output_heat],
|
| 98 |
+
onp.load('norm/sigma_y_moist_CAM5.npy')[None,ind_output_moist]),axis=1)
|
| 99 |
+
|
| 100 |
+
if is_SF == 1:
|
| 101 |
+
mu_SF_out = onp.concatenate((onp.load('norm/mu_y_heat_SPCAM5.npy')[None,ind_output_heat],
|
| 102 |
+
onp.load('norm/mu_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1)
|
| 103 |
+
sigma_SF_out = onp.concatenate((onp.load('norm/sigma_y_heat_SPCAM5.npy')[None,ind_output_heat],
|
| 104 |
+
onp.load('norm/sigma_y_moist_SPCAM5.npy')[None,ind_output_moist]),axis=1)
|
| 105 |
+
|
| 106 |
+
tt = time.time()
|
| 107 |
+
for i in range(32):
|
| 108 |
+
ieff = i + 0
|
| 109 |
+
print(ieff,time.time()-tt)
|
| 110 |
+
tt = time.time()
|
| 111 |
+
if is_MF == 1:
|
| 112 |
+
samples_test_H = onp.concatenate( (onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_1.npy')[0,:,:],
|
| 113 |
+
onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_2.npy')[0,:,:]),axis=0)
|
| 114 |
+
if is_SF == 1:
|
| 115 |
+
samples_test_H = onp.concatenate( (onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_1.npy')[0,:,:],
|
| 116 |
+
onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_1.npy')[0,:,:]),axis=0)
|
| 117 |
+
if is_LF == 1:
|
| 118 |
+
samples_test_H = onp.concatenate( (onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_1.npy')[0,:,:],
|
| 119 |
+
onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_2.npy')[0,:,:]),axis=0)
|
| 120 |
+
samples_test_H = mu_SF_out + sigma_SF_out * samples_test_H
|
| 121 |
+
samples_test_H = (samples_test_H - mu_error_out) / sigma_error_out
|
| 122 |
+
|
| 123 |
+
samples_test_H = reshape_loc_onp(samples_test_H, dim_y)
|
| 124 |
+
samples_test_H = daily_avg(samples_test_H)
|
| 125 |
+
samples_test_H = samples_test_H.reshape((dim_y, samples_test_H.shape[1]*lat*lon))
|
| 126 |
+
samples_test_H = samples_test_H.T
|
| 127 |
+
print(samples_test_H.shape)
|
| 128 |
+
# Npts x dim_y
|
| 129 |
+
if is_MF == 1:
|
| 130 |
+
onp.save('MF_param/MF_param_'+str(ieff)+'/test_pred_reshaped.npy', samples_test_H)
|
| 131 |
+
if is_SF == 1:
|
| 132 |
+
onp.save('SF_param/SF_param_'+str(ieff)+'/test_pred_reshaped.npy', samples_test_H)
|
| 133 |
+
if is_LF == 1:
|
| 134 |
+
onp.save('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_reshaped.npy', samples_test_H)
|
| 135 |
+
|
| 136 |
+
test = onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy')
|
| 137 |
+
test = daily_avg(test)
|
| 138 |
+
test = test.reshape((dim_y, test.shape[1]*lat*lon)) # dim_y x N_samples
|
| 139 |
+
test = test.T
|
| 140 |
+
test = (test - mu_error_out) / sigma_error_out
|
| 141 |
+
onp.save('data_SPCAM5_4K/all_outputs_reshaped_temp_avg.npy', test)
|
| 142 |
+
|
| 143 |
+
else:
|
| 144 |
+
|
| 145 |
+
test = onp.load('data_SPCAM5_4K/all_outputs_reshaped_temp_avg.npy')
|
| 146 |
+
test = onp.array(test,dtype=onp.float64)
|
| 147 |
+
|
| 148 |
+
def crps(outputs, target, weights=None):
|
| 149 |
+
"""
|
| 150 |
+
Computes the Continuous Ranked Probability Score (CRPS) between the target and the ecdf for each output variable and then takes a weighted average over them.
|
| 151 |
+
|
| 152 |
+
Input
|
| 153 |
+
-----
|
| 154 |
+
outputs - float[B, F, S] samples from the model
|
| 155 |
+
target - float[B, F] ground truth target
|
| 156 |
+
"""
|
| 157 |
+
tt = time.time()
|
| 158 |
+
n = outputs.shape[2]
|
| 159 |
+
y_hats = onp.sort(outputs, axis=-1)
|
| 160 |
+
print('sort',time.time()-tt)
|
| 161 |
+
|
| 162 |
+
tt = time.time()
|
| 163 |
+
# E[Y - y]
|
| 164 |
+
mae = onp.abs(target[..., None] - y_hats).mean(axis=(0, -1))
|
| 165 |
+
print('abs',time.time()-tt)
|
| 166 |
+
|
| 167 |
+
tt = time.time()
|
| 168 |
+
# E[Y - Y'] ~= sum_i sum_j |Y_i - Y_j| / (2 * n * (n-1))
|
| 169 |
+
diff = y_hats[..., 1:] - y_hats[..., :-1]
|
| 170 |
+
print('abs2',time.time()-tt)
|
| 171 |
+
|
| 172 |
+
tt = time.time()
|
| 173 |
+
count = onp.arange(1, n) * onp.arange(n - 1, 0, -1)
|
| 174 |
+
print('arange',time.time()-tt)
|
| 175 |
+
|
| 176 |
+
tt = time.time()
|
| 177 |
+
crps = mae - (diff * count).sum(axis=-1).mean(axis=0) / (2 * n * (n-1))
|
| 178 |
+
print('crps final',time.time()-tt)
|
| 179 |
+
return crps
|
| 180 |
+
|
| 181 |
+
if is_MF == 1:
|
| 182 |
+
ieff = 0
|
| 183 |
+
pred_daily = onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None]
|
| 184 |
+
for i in range(31):
|
| 185 |
+
print(i)
|
| 186 |
+
ieff = i+1
|
| 187 |
+
pred_daily = onp.concatenate( (pred_daily,onp.load('MF_param/MF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None]),axis=2)
|
| 188 |
+
pred_daily = onp.array(pred_daily,dtype=onp.float64)
|
| 189 |
+
|
| 190 |
+
crps_f = crps(pred_daily, test)
|
| 191 |
+
onp.save('glob_errors/crps_rpn_MF.npy',crps_f)
|
| 192 |
+
|
| 193 |
+
if is_SF == 1:
|
| 194 |
+
ieff = 0
|
| 195 |
+
pred_daily = onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None]
|
| 196 |
+
for i in range(31):
|
| 197 |
+
print(i)
|
| 198 |
+
ieff = i+1
|
| 199 |
+
pred_daily = onp.concatenate( (pred_daily,onp.load('SF_param/SF_param_'+str(ieff)+'/test_pred_reshaped.npy')[:,:,None]),axis=2)
|
| 200 |
+
pred_daily = onp.array(pred_daily,dtype=onp.float64)
|
| 201 |
+
|
| 202 |
+
crps_f = crps(pred_daily, test)
|
| 203 |
+
print(crps_f.shape)
|
| 204 |
+
print(onp.array(crps_f).shape)
|
| 205 |
+
onp.save('glob_errors/crps_rpn_SF.npy',crps_f)
|
| 206 |
+
|
| 207 |
+
if is_LF == 1:
|
| 208 |
+
ieff = 0
|
| 209 |
+
pred_daily = onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_reshaped.npy')[:,:,None]
|
| 210 |
+
for i in range(31):
|
| 211 |
+
print(i)
|
| 212 |
+
ieff = i+1
|
| 213 |
+
pred_daily = onp.concatenate( (pred_daily,onp.load('MF_param/MF_param_'+str(ieff)+'/LF_test_pred_reshaped.npy')[:,:,None]),axis=2)
|
| 214 |
+
pred_daily = onp.array(pred_daily,dtype=onp.float64)
|
| 215 |
+
|
| 216 |
+
crps_f = crps(pred_daily, test)
|
| 217 |
+
print(crps_f.shape)
|
| 218 |
+
print(onp.array(crps_f).shape)
|
| 219 |
+
onp.save('glob_errors/crps_rpn_LF.npy',crps_f)
|
| 220 |
+
|
7_global_errors_temporal_errors.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Sat May 27 20:48:41 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as onp
|
| 10 |
+
|
| 11 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 12 |
+
plt.rc('font', family='serif')
|
| 13 |
+
plt.rcParams.update({'font.size': 32,
|
| 14 |
+
'lines.linewidth': 2,
|
| 15 |
+
'axes.labelsize': 32,
|
| 16 |
+
'axes.titlesize': 32,
|
| 17 |
+
'xtick.labelsize': 32,
|
| 18 |
+
'ytick.labelsize': 32,
|
| 19 |
+
'legend.fontsize': 32,
|
| 20 |
+
'axes.linewidth': 2,
|
| 21 |
+
"pgf.texsystem": "pdflatex"
|
| 22 |
+
})
|
| 23 |
+
plt.close('all')
|
| 24 |
+
|
| 25 |
+
lat = 96
|
| 26 |
+
lon = 144
|
| 27 |
+
|
| 28 |
+
is_glob_err = 0
|
| 29 |
+
is_temp_MAE = 0
|
| 30 |
+
is_temp_r2 = 1
|
| 31 |
+
|
| 32 |
+
dim_y = 48
|
| 33 |
+
dim_heat = 26
|
| 34 |
+
dim_moist = 22
|
| 35 |
+
|
| 36 |
+
mu_error_out = onp.concatenate((onp.zeros((1,dim_heat),dtype=onp.float32),
|
| 37 |
+
onp.zeros((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 38 |
+
mu_error_out = mu_error_out.T[:,:,None,None]
|
| 39 |
+
|
| 40 |
+
sigma_error_out = onp.concatenate((1/1004.6*onp.ones((1,dim_heat),dtype=onp.float32),
|
| 41 |
+
1/2.26e6*onp.ones((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 42 |
+
|
| 43 |
+
sigma_error_out = sigma_error_out.T[:,:,None,None]
|
| 44 |
+
|
| 45 |
+
test = (onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 46 |
+
test = onp.array(test,dtype=onp.float64)
|
| 47 |
+
|
| 48 |
+
n_run = 128
|
| 49 |
+
pred_det = (onp.load('SF_param/SF_param_det/test_pred_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 50 |
+
pred_det = onp.array(pred_det,dtype=onp.float64)
|
| 51 |
+
|
| 52 |
+
pred_rpn = onp.load('SF_param/mean_RPN_SF_reshaped.npy')
|
| 53 |
+
pred_rpn = (pred_rpn - mu_error_out) / sigma_error_out
|
| 54 |
+
pred_rpn = onp.array(pred_rpn,dtype=onp.float64)
|
| 55 |
+
|
| 56 |
+
pred_rpn_MF = onp.load('MF_param/mean_RPN_MF_reshaped.npy')
|
| 57 |
+
pred_rpn_MF = (pred_rpn_MF - mu_error_out) / sigma_error_out
|
| 58 |
+
pred_rpn_MF = onp.array(pred_rpn_MF,dtype=onp.float64)
|
| 59 |
+
|
| 60 |
+
pred_rpn_LF = onp.load('MF_param/mean_RPN_LF_reshaped.npy')
|
| 61 |
+
pred_rpn_LF = (pred_rpn_LF - mu_error_out) / sigma_error_out
|
| 62 |
+
pred_rpn_LF = onp.array(pred_rpn_LF,dtype=onp.float64)
|
| 63 |
+
|
| 64 |
+
N_dt_day = 24 # we have a dt=1hour
|
| 65 |
+
def daily_avg(test):
|
| 66 |
+
test_daily = []
|
| 67 |
+
N_time_steps = test.shape[1]
|
| 68 |
+
for i in range(test.shape[0]):
|
| 69 |
+
test_daily.append( onp.mean( test[i,:,:,:].reshape( (N_time_steps//N_dt_day, N_dt_day, lat, lon) ), axis=1 ) )
|
| 70 |
+
return onp.array(test_daily) # dim_y x N_day x lat x lon
|
| 71 |
+
pred_det = daily_avg(pred_det)
|
| 72 |
+
pred_rpn = daily_avg(pred_rpn)
|
| 73 |
+
pred_rpn_MF = daily_avg(pred_rpn_MF)
|
| 74 |
+
pred_rpn_LF = daily_avg(pred_rpn_LF)
|
| 75 |
+
test = daily_avg(test)
|
| 76 |
+
|
| 77 |
+
if is_glob_err == 1:
|
| 78 |
+
MAE_det = onp.mean(onp.abs(pred_det-test),axis=(1,2,3)) # dim_y x nt
|
| 79 |
+
MAE_rpn_SF = onp.mean(onp.abs(pred_rpn-test),axis=(1,2,3)) # dim_y x nt
|
| 80 |
+
MAE_rpn_MF = onp.mean( onp.abs(pred_rpn_MF - test) ,axis=(1,2,3))
|
| 81 |
+
MAE_rpn_LF = onp.mean( onp.abs(pred_rpn_LF - test) ,axis=(1,2,3))
|
| 82 |
+
|
| 83 |
+
onp.save('glob_errors/MAE_det.npy',MAE_det)
|
| 84 |
+
onp.save('glob_errors/MAE_rpn_SF.npy',MAE_rpn_SF)
|
| 85 |
+
onp.save('glob_errors/MAE_rpn_MF.npy',MAE_rpn_MF)
|
| 86 |
+
onp.save('glob_errors/MAE_rpn_LF.npy',MAE_rpn_LF)
|
| 87 |
+
|
| 88 |
+
r2_det = 1 - onp.sum( (test-pred_det)**2, axis=(1,2,3) ) / onp.sum( (test-onp.mean(test,axis=(1,2,3))[:,None,None,None])**2, axis=(1,2,3) )
|
| 89 |
+
r2_rpn = 1 - onp.sum( (test-pred_rpn)**2, axis=(1,2,3) ) / onp.sum( (test-onp.mean(test,axis=(1,2,3))[:,None,None,None])**2, axis=(1,2,3) )
|
| 90 |
+
r2_rpn_MF = 1 - onp.sum( (test-pred_rpn_MF)**2, axis=(1,2,3) ) / onp.sum( (test-onp.mean(test,axis=(1,2,3))[:,None,None,None])**2, axis=(1,2,3) )
|
| 91 |
+
r2_rpn_LF = 1 - onp.sum( (test-pred_rpn_LF)**2, axis=(1,2,3) ) / onp.sum( (test-onp.mean(test,axis=(1,2,3))[:,None,None,None])**2, axis=(1,2,3) )
|
| 92 |
+
|
| 93 |
+
onp.save('glob_errors/r2_det.npy',r2_det)
|
| 94 |
+
onp.save('glob_errors/r2_rpn_SF.npy',r2_rpn)
|
| 95 |
+
onp.save('glob_errors/r2_rpn_MF.npy',r2_rpn_MF)
|
| 96 |
+
onp.save('glob_errors/r2_rpn_LF.npy',r2_rpn_LF)
|
| 97 |
+
|
| 98 |
+
if is_temp_MAE == 1:
|
| 99 |
+
x_labels = ['02/2003','03/2003','04/2003','05/2003','06/2003','07/2003',
|
| 100 |
+
'08/2003','09/2003','10/2003','11/2003','12/2003','01/2004','02/2004']
|
| 101 |
+
|
| 102 |
+
print('Compute MAE')
|
| 103 |
+
err_det = onp.mean(onp.abs(pred_det-test),axis=(2,3)) # dim_y x nt
|
| 104 |
+
err_rpn = onp.mean(onp.abs(pred_rpn-test),axis=(2,3)) # dim_y x nt
|
| 105 |
+
err_rpn_MF = onp.mean( onp.abs(pred_rpn_MF - test) ,axis=(2,3))
|
| 106 |
+
err_rpn_LF = onp.mean( onp.abs(pred_rpn_LF - test) ,axis=(2,3))
|
| 107 |
+
|
| 108 |
+
for i in range(dim_y):
|
| 109 |
+
fig = plt.figure(figsize=(15,8))
|
| 110 |
+
ax = fig.add_subplot(111)
|
| 111 |
+
x_labels = ['02/2003','03/2003','04/2003','05/2003','06/2003','07/2003',
|
| 112 |
+
'08/2003','09/2003','10/2003','11/2003','12/2003','01/2004','02/2004']
|
| 113 |
+
ax.set_xticks(onp.linspace(0,err_det.shape[1]-1,13))
|
| 114 |
+
ax.set_xticklabels(x_labels, rotation =45, fontsize=22)
|
| 115 |
+
ax.yaxis.set_tick_params(labelsize=22)
|
| 116 |
+
ax.plot(onp.arange(err_det.shape[1]), err_det[i,:], color='blue', linewidth=3, label = "Det. NN")
|
| 117 |
+
ax.plot(onp.arange(err_det.shape[1]), err_rpn[i,:], '--', color='black', linewidth=3, label = "SF-RPN")
|
| 118 |
+
ax.plot(onp.arange(err_det.shape[1]), err_rpn_LF[i,:], '--', color='orange', linewidth=3, label = "LF-RPN")
|
| 119 |
+
ax.plot(onp.arange(err_det.shape[1]), err_rpn_MF[i,:], color='red', linewidth=3, label = "MF-RPN")
|
| 120 |
+
ax.set_ylabel('MAE')
|
| 121 |
+
ax.set_xlabel('Time')
|
| 122 |
+
ax.grid()
|
| 123 |
+
ax.legend(bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 124 |
+
|
| 125 |
+
if i > 25:
|
| 126 |
+
plt.savefig('temp_plots/moist_MAE_temp_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 127 |
+
|
| 128 |
+
else:
|
| 129 |
+
plt.savefig('temp_plots/heat_MAE_temp_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 130 |
+
|
| 131 |
+
if is_temp_r2 == 1:
|
| 132 |
+
x_labels = ['02/2003','03/2003','04/2003','05/2003','06/2003','07/2003',
|
| 133 |
+
'08/2003','09/2003','10/2003','11/2003','12/2003','01/2004','02/2004']
|
| 134 |
+
|
| 135 |
+
print('Compute R^2')
|
| 136 |
+
r2_det = 1 - onp.sum( (test-pred_det)**2, axis=(2,3) ) / onp.sum( (test-onp.mean(test,axis=(2,3))[:,:,None,None])**2, axis=(2,3) )
|
| 137 |
+
r2_rpn_SF = 1 - onp.sum( (test-pred_rpn)**2, axis=(2,3) ) / onp.sum( (test-onp.mean(test,axis=(2,3))[:,:,None,None])**2, axis=(2,3) )
|
| 138 |
+
r2_rpn_MF = 1 - onp.sum( (test-pred_rpn_MF)**2, axis=(2,3) ) / onp.sum( (test-onp.mean(test,axis=(2,3))[:,:,None,None])**2, axis=(2,3) )
|
| 139 |
+
r2_rpn_LF = 1 - onp.sum( (test-pred_rpn_LF)**2, axis=(2,3) ) / onp.sum( (test-onp.mean(test,axis=(2,3))[:,:,None,None])**2, axis=(2,3) )
|
| 140 |
+
|
| 141 |
+
for i in range(dim_y):
|
| 142 |
+
fig = plt.figure(figsize=(15,8))
|
| 143 |
+
ax = fig.add_subplot(111)
|
| 144 |
+
|
| 145 |
+
ax.set_xticks(onp.linspace(0,r2_det.shape[1]-1,13))
|
| 146 |
+
ax.set_xticklabels(x_labels, rotation =45, fontsize=22)
|
| 147 |
+
ax.yaxis.set_tick_params(labelsize=22)
|
| 148 |
+
ax.plot(onp.arange(r2_det.shape[1]), r2_det[i,:], color='blue', linewidth=3, label = "Det. NN")
|
| 149 |
+
ax.plot(onp.arange(r2_det.shape[1]), r2_rpn_SF[i,:], '--', color='black', linewidth=3, label = "SF-RPN")
|
| 150 |
+
ax.plot(onp.arange(r2_det.shape[1]), r2_rpn_LF[i,:], '--', color='orange', linewidth=3, label = "LF-RPN")
|
| 151 |
+
ax.plot(onp.arange(r2_det.shape[1]), r2_rpn_MF[i,:], color='red', linewidth=3, label = "MF-RPN")
|
| 152 |
+
ax.set_ylabel('$R^2$')
|
| 153 |
+
ax.set_xlabel('Time')
|
| 154 |
+
ax.grid()
|
| 155 |
+
ax.legend(bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 156 |
+
|
| 157 |
+
if i > 25:
|
| 158 |
+
plt.savefig('temp_plots/moist_r2_temp_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 159 |
+
|
| 160 |
+
else:
|
| 161 |
+
plt.savefig('temp_plots/heat_r2_temp_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 162 |
+
|
| 163 |
+
|
7_long_lat_errors.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Thu Jun 8 00:59:59 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
import numpy as onp
|
| 9 |
+
|
| 10 |
+
lat = 96
|
| 11 |
+
lon = 144
|
| 12 |
+
|
| 13 |
+
dim_y = 48
|
| 14 |
+
dim_heat = 26
|
| 15 |
+
dim_moist = 22
|
| 16 |
+
|
| 17 |
+
mu_error_out = onp.concatenate((onp.zeros((1,dim_heat),dtype=onp.float32),
|
| 18 |
+
onp.zeros((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 19 |
+
mu_error_out = mu_error_out.T[:,:,None,None]
|
| 20 |
+
|
| 21 |
+
sigma_error_out = onp.concatenate((1/1004.6*onp.ones((1,dim_heat),dtype=onp.float32),
|
| 22 |
+
1/2.26e6*onp.ones((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 23 |
+
|
| 24 |
+
sigma_error_out = sigma_error_out.T[:,:,None,None]
|
| 25 |
+
|
| 26 |
+
is_det = 0
|
| 27 |
+
is_SF = 0
|
| 28 |
+
is_rpn_MF = 0
|
| 29 |
+
is_LF = 1
|
| 30 |
+
|
| 31 |
+
N_dt_day = 24 # we have a dt=1hour
|
| 32 |
+
|
| 33 |
+
test = (onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 34 |
+
test = onp.array(test,dtype=onp.float64)
|
| 35 |
+
|
| 36 |
+
def daily_avg(test):
|
| 37 |
+
test_daily = []
|
| 38 |
+
N_time_steps = test.shape[1]
|
| 39 |
+
for i in range(test.shape[0]):
|
| 40 |
+
test_daily.append( onp.mean( test[i,:,:,:].reshape( (N_time_steps//N_dt_day, N_dt_day, lat, lon) ), axis=1 ) )
|
| 41 |
+
return onp.array(test_daily)
|
| 42 |
+
|
| 43 |
+
test = daily_avg(test)
|
| 44 |
+
|
| 45 |
+
if is_det == 1:
|
| 46 |
+
|
| 47 |
+
pred = (onp.load('SF_param/SF_param_det/test_pred_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 48 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 49 |
+
pred = daily_avg(pred)
|
| 50 |
+
print('Compute MAE')
|
| 51 |
+
err = onp.mean(onp.abs(pred-test),axis=1) # dim_y x lon x lat
|
| 52 |
+
onp.save('SF_results/MAE_det_long_lat.npy',err)
|
| 53 |
+
|
| 54 |
+
print('Compute R^2')
|
| 55 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1 ) / onp.sum( (test-onp.mean(test,axis=1)[:,None,:,:])**2, axis=1 )
|
| 56 |
+
onp.save('SF_results/r2_det_long_lat.npy',r2)
|
| 57 |
+
|
| 58 |
+
if is_LF == 1:
|
| 59 |
+
pred = (onp.load('MF_param/mean_RPN_LF_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 60 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 61 |
+
pred = daily_avg(pred)
|
| 62 |
+
print('Compute MAE')
|
| 63 |
+
err = onp.mean(onp.abs(pred-test),axis=1) # dim_y x lon x lat
|
| 64 |
+
onp.save('MF_results/MAE_LF_long_lat.npy',err)
|
| 65 |
+
|
| 66 |
+
print('Compute R^2')
|
| 67 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1 ) / onp.sum( (test-onp.mean(test,axis=1)[:,None,:,:])**2, axis=1 )
|
| 68 |
+
onp.save('MF_results/r2_LF_long_lat',r2)
|
| 69 |
+
|
| 70 |
+
if is_SF == 1:
|
| 71 |
+
pred = (onp.load('SF_param/mean_RPN_SF_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 72 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 73 |
+
pred = daily_avg(pred)
|
| 74 |
+
print('Compute MAE')
|
| 75 |
+
err = onp.mean(onp.abs(pred-test),axis=1) # dim_y x lon x lat
|
| 76 |
+
onp.save('SF_results/MAE_SF_long_lat.npy', err)
|
| 77 |
+
|
| 78 |
+
print('Compute R^2')
|
| 79 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1)/onp.sum( (test-onp.mean(test,axis=1)[:,None,:,:])**2, axis=1)
|
| 80 |
+
onp.save('SF_results/r2_SF_long_lat.npy', r2)
|
| 81 |
+
|
| 82 |
+
if is_rpn_MF == 1:
|
| 83 |
+
pred = (onp.load('MF_param/mean_RPN_MF_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 84 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 85 |
+
pred = daily_avg(pred)
|
| 86 |
+
print('Compute MAE')
|
| 87 |
+
err = onp.mean( onp.abs(pred - test) ,axis=1)
|
| 88 |
+
onp.save('MF_results/MAE_MF_long_lat.npy', err)
|
| 89 |
+
|
| 90 |
+
print('Compute R^2')
|
| 91 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1)/onp.sum( (test-onp.mean(test,axis=1)[:,None,:,:])**2, axis=1)
|
| 92 |
+
onp.save('MF_results/r2_MF_long_lat.npy', r2)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
7_pressure_lat_errors.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed Jun 21 09:14:29 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
import numpy as onp
|
| 9 |
+
|
| 10 |
+
lat = 96
|
| 11 |
+
lon = 144
|
| 12 |
+
|
| 13 |
+
dim_heat = 26
|
| 14 |
+
dim_moist = 22
|
| 15 |
+
mu_error_out = onp.concatenate((onp.zeros((1,dim_heat),dtype=onp.float32),
|
| 16 |
+
onp.zeros((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 17 |
+
mu_error_out = mu_error_out.T[:,:,None,None]
|
| 18 |
+
sigma_error_out = onp.concatenate((1/1004.6*onp.ones((1,dim_heat),dtype=onp.float32),
|
| 19 |
+
1/2.26e6*onp.ones((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 20 |
+
sigma_error_out = sigma_error_out.T[:,:,None,None]
|
| 21 |
+
|
| 22 |
+
is_det = 0
|
| 23 |
+
is_SF = 0
|
| 24 |
+
is_MF = 0
|
| 25 |
+
is_LF = 1
|
| 26 |
+
|
| 27 |
+
N_dt_day = 24 # we have a dt=1hour
|
| 28 |
+
|
| 29 |
+
test = (onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 30 |
+
test = onp.array(test,dtype=onp.float64)
|
| 31 |
+
|
| 32 |
+
def daily_avg(test):
|
| 33 |
+
test_daily = []
|
| 34 |
+
N_time_steps = test.shape[1]
|
| 35 |
+
for i in range(test.shape[0]):
|
| 36 |
+
test_daily.append( onp.mean( test[i,:,:,:].reshape( (N_time_steps//N_dt_day, N_dt_day, lat, lon) ), axis=1 ) )
|
| 37 |
+
return onp.array(test_daily)
|
| 38 |
+
|
| 39 |
+
test = daily_avg(test)
|
| 40 |
+
|
| 41 |
+
if is_LF == 1:
|
| 42 |
+
pred = (onp.load('MF_param/mean_RPN_LF_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 43 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 44 |
+
pred = daily_avg(pred)
|
| 45 |
+
pred = onp.mean(pred, axis = 3)
|
| 46 |
+
test = onp.mean(test, axis = 3)
|
| 47 |
+
|
| 48 |
+
print('Compute R^2')
|
| 49 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1)/onp.sum( (test-onp.mean(test,axis=1)[:,None,:])**2, axis=1)
|
| 50 |
+
onp.save('MF_results/r2_LF_pres_lat.npy', r2)
|
| 51 |
+
|
| 52 |
+
if is_det == 1:
|
| 53 |
+
pred = (onp.load('SF_param/SF_param_det/test_pred_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 54 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 55 |
+
pred = daily_avg(pred)
|
| 56 |
+
pred = onp.mean(pred, axis = 3)
|
| 57 |
+
test = onp.mean(test, axis = 3)
|
| 58 |
+
|
| 59 |
+
print('Compute R^2')
|
| 60 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1)/onp.sum( (test-onp.mean(test,axis=1)[:,None,:])**2, axis=1)
|
| 61 |
+
onp.save('SF_results/r2_det_pres_lat.npy',r2)
|
| 62 |
+
|
| 63 |
+
if is_SF == 1:
|
| 64 |
+
pred = (onp.load('SF_param/mean_RPN_SF_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 65 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 66 |
+
pred = daily_avg(pred)
|
| 67 |
+
pred = onp.mean(pred, axis = 3)
|
| 68 |
+
test = onp.mean(test, axis = 3)
|
| 69 |
+
|
| 70 |
+
print('Compute R^2')
|
| 71 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1)/onp.sum( (test-onp.mean(test,axis=1)[:,None,:])**2, axis=1)
|
| 72 |
+
onp.save('SF_results/r2_SF_pres_lat.npy', r2)
|
| 73 |
+
|
| 74 |
+
if is_MF == 1:
|
| 75 |
+
pred = (onp.load('MF_param/mean_RPN_MF_reshaped.npy') - mu_error_out) / sigma_error_out
|
| 76 |
+
pred = onp.array(pred,dtype=onp.float64)
|
| 77 |
+
pred = daily_avg(pred)
|
| 78 |
+
pred = onp.mean(pred, axis = 3)
|
| 79 |
+
test = onp.mean(test, axis = 3)
|
| 80 |
+
|
| 81 |
+
print('Compute R^2')
|
| 82 |
+
r2 = 1 - onp.sum( (test-pred)**2, axis=1)/onp.sum( (test-onp.mean(test,axis=1)[:,None,:])**2, axis=1)
|
| 83 |
+
onp.save('MF_results/r2_MF_pres_lat.npy', r2)
|
8_long_lat_plots.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Fri Jun 9 07:14:37 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 12 |
+
plt.rc('font', family='serif')
|
| 13 |
+
plt.rcParams.update({'font.size': 16,
|
| 14 |
+
'lines.linewidth': 2,
|
| 15 |
+
'axes.labelsize': 20,
|
| 16 |
+
'axes.titlesize': 20,
|
| 17 |
+
'xtick.labelsize': 16,
|
| 18 |
+
'ytick.labelsize': 16,
|
| 19 |
+
'legend.fontsize': 20,
|
| 20 |
+
'axes.linewidth': 2,
|
| 21 |
+
"pgf.texsystem": "pdflatex"
|
| 22 |
+
})
|
| 23 |
+
|
| 24 |
+
lat = 96
|
| 25 |
+
lon = 144
|
| 26 |
+
x = np.linspace(0, 360-360/144, lon)
|
| 27 |
+
y = np.linspace(-90, 90, lat)
|
| 28 |
+
X, Y = np.meshgrid(x, y)
|
| 29 |
+
|
| 30 |
+
from mpl_toolkits.basemap import Basemap
|
| 31 |
+
|
| 32 |
+
dim_y = 26+22
|
| 33 |
+
|
| 34 |
+
MAE_det = np.load('SF_results/MAE_det_long_lat.npy')
|
| 35 |
+
r2_det = np.load('SF_results/r2_det_long_lat.npy')
|
| 36 |
+
|
| 37 |
+
MAE_SF = np.load('SF_results/MAE_SF_long_lat.npy')
|
| 38 |
+
r2_SF = np.load('SF_results/r2_SF_long_lat.npy')
|
| 39 |
+
|
| 40 |
+
MAE_MF = np.load('MF_results/MAE_MF_long_lat.npy')
|
| 41 |
+
r2_MF = np.load('MF_results/r2_MF_long_lat.npy')
|
| 42 |
+
|
| 43 |
+
MAE_LF = np.load('MF_results/MAE_LF_long_lat.npy')
|
| 44 |
+
r2_LF = np.load('MF_results/r2_LF_long_lat.npy')
|
| 45 |
+
|
| 46 |
+
dim_heat = 26
|
| 47 |
+
dim_moist = 22
|
| 48 |
+
mu_error_out = np.concatenate((np.zeros((1,dim_heat),dtype=np.float32),
|
| 49 |
+
np.zeros((1,dim_moist),dtype=np.float32)),axis=1)
|
| 50 |
+
mu_error_out = mu_error_out.T[:,:,None,None]
|
| 51 |
+
sigma_error_out = np.concatenate((1/1004.6*np.ones((1,dim_heat),dtype=np.float32),
|
| 52 |
+
1/2.26e6*np.ones((1,dim_moist),dtype=np.float32)),axis=1)
|
| 53 |
+
sigma_error_out = sigma_error_out.T[:,:,None,None]
|
| 54 |
+
|
| 55 |
+
print('Create err plots')
|
| 56 |
+
|
| 57 |
+
is_uncert = 1
|
| 58 |
+
is_MAE = 1
|
| 59 |
+
is_R2 = 1
|
| 60 |
+
|
| 61 |
+
if is_uncert == 1: # uncertainty plots
|
| 62 |
+
std_rpn_MF = np.load('MF_param/std_RPN_MF_reshaped.npy')/ sigma_error_out
|
| 63 |
+
|
| 64 |
+
std_rpn_MF = np.mean(std_rpn_MF, axis=1)
|
| 65 |
+
for i in range(dim_y):
|
| 66 |
+
fig = plt.figure(figsize=(10.5, 14))
|
| 67 |
+
ax = fig.add_subplot(211)
|
| 68 |
+
ax.set_title("MAE")
|
| 69 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 70 |
+
MAE_MF_p = MAE_MF[i,:,:]
|
| 71 |
+
contour_plot = m.pcolormesh(X, Y,MAE_MF_p, latlon = True, cmap='Blues_r')
|
| 72 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 73 |
+
m.colorbar(contour_plot)
|
| 74 |
+
|
| 75 |
+
ax = fig.add_subplot(212)
|
| 76 |
+
ax.set_title("Uncertainty "+r'$\sigma_M$')
|
| 77 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 78 |
+
std_rpn_MF_p = std_rpn_MF[i,:,:]
|
| 79 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_MF_p, latlon = True, cmap='Blues_r')
|
| 80 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 81 |
+
m.colorbar(contour_plot)
|
| 82 |
+
|
| 83 |
+
plt.subplots_adjust(hspace=-0.35)
|
| 84 |
+
|
| 85 |
+
if i > 25:
|
| 86 |
+
plt.savefig('long_lat_uncert_plots/MF_moist_long_lat_uncert_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 87 |
+
|
| 88 |
+
else:
|
| 89 |
+
plt.savefig('long_lat_uncert_plots/MF_heat_long_lat_uncert_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 90 |
+
|
| 91 |
+
std_rpn_SF = np.load('SF_param/std_RPN_SF_reshaped.npy')/ sigma_error_out
|
| 92 |
+
std_rpn_SF = np.mean(std_rpn_SF, axis=1)
|
| 93 |
+
for i in range(dim_y):
|
| 94 |
+
fig = plt.figure(figsize=(10.5, 14))
|
| 95 |
+
ax = fig.add_subplot(211)
|
| 96 |
+
ax.set_title("MAE")
|
| 97 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 98 |
+
MAE_SF_p = MAE_SF[i,:,:]
|
| 99 |
+
contour_plot = m.pcolormesh(X, Y, MAE_SF_p, latlon = True, cmap='Blues_r')
|
| 100 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 101 |
+
m.colorbar(contour_plot)
|
| 102 |
+
ax = fig.add_subplot(212)
|
| 103 |
+
ax.set_title("Uncertainty "+r'$\sigma_M$')
|
| 104 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 105 |
+
std_rpn_SF_p = std_rpn_SF[i,:,:]
|
| 106 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_SF_p, latlon = True, cmap='Blues_r')
|
| 107 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 108 |
+
m.colorbar(contour_plot)
|
| 109 |
+
plt.subplots_adjust(hspace=-0.35)
|
| 110 |
+
if i > 25:
|
| 111 |
+
plt.savefig('long_lat_uncert_plots/SF_moist_long_lat_uncert_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 112 |
+
|
| 113 |
+
else:
|
| 114 |
+
plt.savefig('long_lat_uncert_plots/SF_moist_long_lat_uncert_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 115 |
+
|
| 116 |
+
std_rpn_LF = np.load('MF_param/std_RPN_LF_reshaped.npy')/ sigma_error_out
|
| 117 |
+
std_rpn_LF = np.mean(std_rpn_LF, axis=1)
|
| 118 |
+
for i in range(dim_y):
|
| 119 |
+
fig = plt.figure(figsize=(10.5, 14))
|
| 120 |
+
ax = fig.add_subplot(211)
|
| 121 |
+
ax.set_title("MAE")
|
| 122 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 123 |
+
MAE_LF_p = MAE_LF[i,:,:]
|
| 124 |
+
contour_plot = m.pcolormesh(X, Y, MAE_LF_p, latlon = True, cmap='Blues_r')
|
| 125 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 126 |
+
m.colorbar(contour_plot)
|
| 127 |
+
ax = fig.add_subplot(212)
|
| 128 |
+
ax.set_title("Uncertainty "+r'$\sigma_M$')
|
| 129 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 130 |
+
std_rpn_LF_p = std_rpn_LF[i,:,:]
|
| 131 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_LF_p, latlon = True, cmap='Blues_r')
|
| 132 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 133 |
+
m.colorbar(contour_plot)
|
| 134 |
+
plt.subplots_adjust(hspace=-0.35)
|
| 135 |
+
if i > 25:
|
| 136 |
+
plt.savefig('long_lat_uncert_plots/LF_moist_long_lat_uncert_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 137 |
+
|
| 138 |
+
else:
|
| 139 |
+
plt.savefig('long_lat_uncert_plots/LF_moist_long_lat_uncert_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 140 |
+
|
| 141 |
+
else:
|
| 142 |
+
if is_MAE == 1:
|
| 143 |
+
for i in range(dim_y):
|
| 144 |
+
|
| 145 |
+
mmin = min( np.min(MAE_det[i,:,:]), np.min(MAE_SF[i,:,:]), np.min(MAE_MF[i,:,:]), np.min(MAE_LF[i,:,:]) )
|
| 146 |
+
mmax = max( np.max(MAE_det[i,:,:]), np.max(MAE_SF[i,:,:]), np.max(MAE_MF[i,:,:]), np.max(MAE_LF[i,:,:]) )
|
| 147 |
+
levels = np.linspace(mmin, mmax, 8)
|
| 148 |
+
fig = plt.figure(figsize=(21, 14))
|
| 149 |
+
ax = fig.add_subplot(221)
|
| 150 |
+
ax.set_title("Deterministic NN")
|
| 151 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 152 |
+
MAE_det_p = MAE_det[i,:,:]
|
| 153 |
+
contour_plot = m.pcolormesh(X, Y,MAE_det_p, latlon = True, cmap='Blues', vmin=mmin, vmax=mmax)
|
| 154 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 155 |
+
m.colorbar(contour_plot)
|
| 156 |
+
|
| 157 |
+
ax = fig.add_subplot(222)
|
| 158 |
+
ax.set_title("SF-HF-RPN")
|
| 159 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 160 |
+
MAE_SF_p = MAE_SF[i,:,:]
|
| 161 |
+
contour_plot = m.pcolormesh(X, Y, MAE_SF_p, latlon = True, cmap='Blues', vmin=mmin, vmax=mmax)
|
| 162 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 163 |
+
m.colorbar(contour_plot)
|
| 164 |
+
|
| 165 |
+
ax = fig.add_subplot(224)
|
| 166 |
+
ax.set_title("MF-RPN")
|
| 167 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 168 |
+
MAE_MF_p = MAE_MF[i,:,:]
|
| 169 |
+
contour_plot = m.pcolormesh(X, Y,MAE_MF_p, latlon = True, cmap='Blues', vmin=mmin, vmax=mmax)
|
| 170 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 171 |
+
m.colorbar(contour_plot)
|
| 172 |
+
|
| 173 |
+
ax = fig.add_subplot(223)
|
| 174 |
+
ax.set_title("LF-RPN")
|
| 175 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 176 |
+
MAE_LF_p = MAE_LF[i,:,:]
|
| 177 |
+
contour_plot = m.pcolormesh(X, Y, MAE_LF_p, latlon = True, cmap='Blues', vmin=mmin, vmax=mmax)
|
| 178 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 179 |
+
m.colorbar(contour_plot)
|
| 180 |
+
|
| 181 |
+
plt.subplots_adjust(wspace=0.15, hspace=-0.35)
|
| 182 |
+
if i > 25:
|
| 183 |
+
plt.savefig('long_lat_plots/moist_MAE_long_lat_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 184 |
+
else:
|
| 185 |
+
plt.savefig('long_lat_plots/heat_MAE_long_lat_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 186 |
+
|
| 187 |
+
if is_R2 == 1:
|
| 188 |
+
for i in range(dim_y):
|
| 189 |
+
|
| 190 |
+
mmin = max(min( np.min(r2_det[i,:,:]), np.min(r2_SF[i,:,:]), np.min(r2_MF[i,:,:]), np.min(r2_LF[i,:,:])), -10 )
|
| 191 |
+
levels = np.linspace(0, 1, 5)
|
| 192 |
+
fig = plt.figure(figsize=(21, 14))
|
| 193 |
+
ax = fig.add_subplot(221)
|
| 194 |
+
ax.set_title("Deterministic NN")
|
| 195 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 196 |
+
r2_det_p = r2_det[i,:,:]
|
| 197 |
+
contour_plot = m.pcolormesh(X, Y, r2_det_p, latlon = True, cmap='Blues', vmin=0, vmax=1)
|
| 198 |
+
m.contour(X, Y, r2_det_p, [0.7], latlon = True, colors='pink', linewidths=[2])
|
| 199 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 200 |
+
m.colorbar(contour_plot)
|
| 201 |
+
|
| 202 |
+
ax = fig.add_subplot(222)
|
| 203 |
+
ax.set_title("SF-HF-RPN")
|
| 204 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 205 |
+
r2_SF_p = r2_SF[i,:,:]
|
| 206 |
+
contour_plot = m.pcolormesh(X, Y, r2_SF_p, latlon = True, cmap='Blues', vmin=0, vmax=1)
|
| 207 |
+
m.contour(X, Y, r2_SF_p, [0.7], latlon = True, colors='pink', linewidths=[2])
|
| 208 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 209 |
+
m.colorbar(contour_plot)
|
| 210 |
+
|
| 211 |
+
ax = fig.add_subplot(224)
|
| 212 |
+
ax.set_title("MF-RPN")
|
| 213 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 214 |
+
r2_MF_p = r2_MF[i,:,:]
|
| 215 |
+
contour_plot = m.pcolormesh(X, Y, r2_MF_p, latlon = True, cmap='Blues', vmin=0, vmax=1)
|
| 216 |
+
m.contour(X, Y, r2_MF_p, [0.7], latlon = True, colors='pink', linewidths=[2])
|
| 217 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 218 |
+
m.colorbar(contour_plot)
|
| 219 |
+
|
| 220 |
+
ax = fig.add_subplot(223)
|
| 221 |
+
ax.set_title("LF-RPN")
|
| 222 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 223 |
+
r2_LF_p = r2_LF[i,:,:]
|
| 224 |
+
contour_plot = m.pcolormesh(X, Y, r2_LF_p, latlon = True, cmap='Blues', vmin=0, vmax=1)
|
| 225 |
+
m.contour(X, Y, r2_LF_p, [0.7], latlon = True, colors='pink', linewidths=[2])
|
| 226 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 227 |
+
m.colorbar(contour_plot)
|
| 228 |
+
|
| 229 |
+
plt.subplots_adjust(wspace=0.15, hspace=-0.35)
|
| 230 |
+
if i > 25:
|
| 231 |
+
plt.savefig('long_lat_plots/moist_r2_long_lat_'+str(i-26+4)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 232 |
+
else:
|
| 233 |
+
plt.savefig('long_lat_plots/heat_r2_long_lat_'+str(i)+'.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 234 |
+
|
8_plot_global_errors.py
ADDED
|
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Tue May 16 16:02:19 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as onp
|
| 10 |
+
|
| 11 |
+
#values of average pressure for different vertical levels
|
| 12 |
+
press = ('3.5', '7.4', '14', '24', '37', '53', '70', '85', '100', '117',
|
| 13 |
+
'137', '160', '188', '221', '259', '305', '358', '420', '494',
|
| 14 |
+
'581', '673', '761', '837', '897', '937', '958')
|
| 15 |
+
|
| 16 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 17 |
+
plt.rc('font', family='serif')
|
| 18 |
+
plt.rcParams.update({'font.size': 32,
|
| 19 |
+
'lines.linewidth': 2,
|
| 20 |
+
'axes.labelsize': 32,
|
| 21 |
+
'axes.titlesize': 32,
|
| 22 |
+
'xtick.labelsize': 32,
|
| 23 |
+
'ytick.labelsize': 32,
|
| 24 |
+
'legend.fontsize': 32,
|
| 25 |
+
'axes.linewidth': 2,
|
| 26 |
+
"pgf.texsystem": "pdflatex"
|
| 27 |
+
})
|
| 28 |
+
plt.close('all')
|
| 29 |
+
|
| 30 |
+
R2_w_neg = 1
|
| 31 |
+
R2_wo_neg = 0
|
| 32 |
+
MAE = 0
|
| 33 |
+
CRPS = 0
|
| 34 |
+
|
| 35 |
+
if R2_wo_neg == 1: # global R^2 plots without negative values
|
| 36 |
+
nn = 26
|
| 37 |
+
MF = onp.load('glob_errors/r2_rpn_MF.npy')[:26]
|
| 38 |
+
SF = onp.load('glob_errors/r2_rpn_SF.npy')[:26]
|
| 39 |
+
LF = onp.load('glob_errors/r2_rpn_LF.npy')[:26]
|
| 40 |
+
det = onp.load('glob_errors/r2_det.npy')[:26]
|
| 41 |
+
MF[MF<0] = 0
|
| 42 |
+
SF[SF<0] = 0
|
| 43 |
+
LF[LF<0] = 0
|
| 44 |
+
det[det<0] = 0
|
| 45 |
+
xx = onp.arange(nn)
|
| 46 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 47 |
+
ax.plot(xx, det, color='blue')
|
| 48 |
+
ax.plot(xx, SF, '--', color='black')
|
| 49 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 50 |
+
ax.plot(xx, MF, color='red')
|
| 51 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 52 |
+
ax.set_xticks(onp.arange(nn))
|
| 53 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20)
|
| 54 |
+
ax.tick_params(axis='x',colors='grey')
|
| 55 |
+
ax.set_ylim([0,1])
|
| 56 |
+
ax.set_ylabel('$R^2$')
|
| 57 |
+
plt.grid()
|
| 58 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 59 |
+
plt.show()
|
| 60 |
+
plt.savefig('glob_errors/R2_w_neg_heat.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 61 |
+
|
| 62 |
+
nn = 22
|
| 63 |
+
MF = onp.load('glob_errors/r2_rpn_MF.npy')[26:]
|
| 64 |
+
SF = onp.load('glob_errors/r2_rpn_SF.npy')[26:]
|
| 65 |
+
LF = onp.load('glob_errors/r2_rpn_LF.npy')[26:]
|
| 66 |
+
det = onp.load('glob_errors/r2_det.npy')[26:]
|
| 67 |
+
MF[MF<0] = 0
|
| 68 |
+
SF[SF<0] = 0
|
| 69 |
+
LF[LF<0] = 0
|
| 70 |
+
det[det<0] = 0
|
| 71 |
+
press = press[4:]
|
| 72 |
+
xx = onp.arange(nn)
|
| 73 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 74 |
+
ax.plot(xx, det, color='blue')
|
| 75 |
+
ax.plot(xx, SF, '--', color='black')
|
| 76 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 77 |
+
ax.plot(xx, MF, color='red')
|
| 78 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 79 |
+
ax.set_xticks(onp.arange(nn))
|
| 80 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20)
|
| 81 |
+
ax.tick_params(axis='x',colors='grey')
|
| 82 |
+
ax.set_ylim([0,1])
|
| 83 |
+
ax.set_ylabel('$R^2$')
|
| 84 |
+
plt.grid()
|
| 85 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 86 |
+
plt.show()
|
| 87 |
+
plt.savefig('glob_errors/R2_w_neg_moist.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 88 |
+
|
| 89 |
+
if MAE == 1: # gloab MAE plots
|
| 90 |
+
nn = 26
|
| 91 |
+
MF = onp.load('glob_errors/MAE_rpn_MF.npy')[:26]
|
| 92 |
+
SF = onp.load('glob_errors/MAE_rpn_SF.npy')[:26]
|
| 93 |
+
LF = onp.load('glob_errors/MAE_rpn_LF.npy')[:26]
|
| 94 |
+
det = onp.load('glob_errors/MAE_det.npy')[:26]
|
| 95 |
+
xx = onp.arange(nn)
|
| 96 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 97 |
+
plt.yscale("log")
|
| 98 |
+
ax.plot(xx, det, color='blue')
|
| 99 |
+
ax.plot(xx, SF, '--', color='black')
|
| 100 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 101 |
+
ax.plot(xx, MF, color='red')
|
| 102 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 103 |
+
ax.set_xticks(onp.arange(nn))
|
| 104 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20)
|
| 105 |
+
ax.tick_params(axis='x',colors='grey')
|
| 106 |
+
plt.ylabel('MAE')
|
| 107 |
+
plt.grid()
|
| 108 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 109 |
+
plt.show()
|
| 110 |
+
plt.savefig('glob_errors/MAE_heat.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 111 |
+
|
| 112 |
+
nn = 22
|
| 113 |
+
MF = onp.load('glob_errors/MAE_rpn_MF.npy')[26:]
|
| 114 |
+
SF = onp.load('glob_errors/MAE_rpn_SF.npy')[26:]
|
| 115 |
+
LF = onp.load('glob_errors/MAE_rpn_LF.npy')[26:]
|
| 116 |
+
det = onp.load('glob_errors/MAE_det.npy')[26:]
|
| 117 |
+
press = press[4:]
|
| 118 |
+
xx = onp.arange(nn)
|
| 119 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 120 |
+
plt.yscale("log")
|
| 121 |
+
ax.plot(xx, det, color='blue')
|
| 122 |
+
ax.plot(xx, SF, '--', color='black')
|
| 123 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 124 |
+
ax.plot(xx, MF, color='red')
|
| 125 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 126 |
+
ax.set_xticks(onp.arange(nn))
|
| 127 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20)
|
| 128 |
+
ax.tick_params(axis='x',colors='grey')
|
| 129 |
+
plt.ylabel('MAE')
|
| 130 |
+
plt.grid()
|
| 131 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 132 |
+
plt.show()
|
| 133 |
+
plt.savefig('glob_errors/MAE_moist.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 134 |
+
|
| 135 |
+
if R2_w_neg == 1: # global R^2 plots with negative values
|
| 136 |
+
nn = 26
|
| 137 |
+
MF = onp.load('glob_errors/r2_rpn_MF.npy')[:26]
|
| 138 |
+
SF = onp.load('glob_errors/r2_rpn_SF.npy')[:26]
|
| 139 |
+
LF = onp.load('glob_errors/r2_rpn_LF.npy')[:26]
|
| 140 |
+
det = onp.load('glob_errors/r2_det.npy')[:26]
|
| 141 |
+
MF[MF<0] = 0
|
| 142 |
+
SF[SF<0] = 0
|
| 143 |
+
LF[LF<0] = 0
|
| 144 |
+
det[det<0] = 0
|
| 145 |
+
xx = onp.arange(nn)
|
| 146 |
+
# values below are optained from r2_rpn_MF.npy, r2_rpn_SF.npy, r2_rpn_LF.npy and r2_det.npy
|
| 147 |
+
det_r = ['-2.3', '-2.4', '-2.1', '-1.6', '-0.6', '', '-26', '-43', '-15',
|
| 148 |
+
'-13', '-11', '-3.5', '-3.2', '-2.4', '-1.2', '-0.4', '', '',
|
| 149 |
+
'', '', '-0.01', '-0.2', '-0.4', '-0.01', '-2.6', '', '-5']
|
| 150 |
+
SF_r = ['-3.5', '-2.6', '-2.4', '-1.9', '-0.9', '', '-64', '-70', '-5.2',
|
| 151 |
+
'-13', '-4.9', '-2.6', '-2.1', '-1.1', '-0.9', '-0.8', '', '', '',
|
| 152 |
+
'', '', '', '', '', '-0.6', '']
|
| 153 |
+
LF_r = ['-5.6', '', '', '', '', '', '', '-1.4', '-0.3', '-0.6', '', '',
|
| 154 |
+
'', '', '', '', '', '', '', '', '', '', '', '', '-0.3', '-0.1']
|
| 155 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 156 |
+
ax.plot(xx, det, color='blue')
|
| 157 |
+
ii= 0
|
| 158 |
+
for x,y in zip(xx,det):
|
| 159 |
+
ax.annotate(det_r[ii],
|
| 160 |
+
(x,y),
|
| 161 |
+
textcoords="offset points",
|
| 162 |
+
xytext = (0,-60),
|
| 163 |
+
ha='center',
|
| 164 |
+
color = 'blue',
|
| 165 |
+
fontsize = 20,
|
| 166 |
+
rotation = -60)
|
| 167 |
+
ii+=1
|
| 168 |
+
ax.plot(xx, SF, '--', color='black')
|
| 169 |
+
ii= 0
|
| 170 |
+
for x,y in zip(xx,SF):
|
| 171 |
+
ax.annotate(SF_r[ii],
|
| 172 |
+
(x,y),
|
| 173 |
+
textcoords="offset points",
|
| 174 |
+
xytext = (0,-120),
|
| 175 |
+
ha='center',
|
| 176 |
+
color = 'black',
|
| 177 |
+
fontsize = 20,
|
| 178 |
+
rotation = -60)
|
| 179 |
+
ii+=1
|
| 180 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 181 |
+
ii= 0
|
| 182 |
+
for x,y in zip(xx,LF):
|
| 183 |
+
ax.annotate(LF_r[ii],
|
| 184 |
+
(x,y),
|
| 185 |
+
textcoords="offset points",
|
| 186 |
+
xytext = (0,-180),
|
| 187 |
+
ha='center',
|
| 188 |
+
color = 'orange',
|
| 189 |
+
fontsize = 20,
|
| 190 |
+
rotation = -60)
|
| 191 |
+
ii+=1
|
| 192 |
+
ax.plot(xx, MF, color='red')
|
| 193 |
+
ax.set_ylim([0,1])
|
| 194 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 195 |
+
ax.xaxis.set_label_coords(0.5, -0.55)
|
| 196 |
+
ax.set_xticks(onp.arange(nn))
|
| 197 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20, y=-0.4)
|
| 198 |
+
ax.tick_params(axis='x',colors='grey')
|
| 199 |
+
ax.set_ylabel('$R^2$')
|
| 200 |
+
plt.grid()
|
| 201 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 202 |
+
plt.show()
|
| 203 |
+
plt.savefig('glob_errors/R2_w_neg_heat.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 204 |
+
|
| 205 |
+
nn = 22
|
| 206 |
+
MF = onp.load('glob_errors/r2_rpn_MF.npy')[26:]
|
| 207 |
+
SF = onp.load('glob_errors/r2_rpn_SF.npy')[26:]
|
| 208 |
+
LF = onp.load('glob_errors/r2_rpn_LF.npy')[26:]
|
| 209 |
+
det = onp.load('glob_errors/r2_det.npy')[26:]
|
| 210 |
+
press = press[4:]
|
| 211 |
+
MF[MF<0] = 0
|
| 212 |
+
SF[SF<0] = 0
|
| 213 |
+
LF[LF<0] = 0
|
| 214 |
+
det[det<0] = 0
|
| 215 |
+
xx = onp.arange(nn)
|
| 216 |
+
det_r = ['-94', '-97', '-11', '-14', '-4.4', '-4.9', '-3.3', '-2.7', '-1.6',
|
| 217 |
+
'-1.2', '-0.4', '-0.3', '', '', '', '', '-2.7', '-1.0', '-0.7',
|
| 218 |
+
'-0.6', '-1.2', '']
|
| 219 |
+
SF_r = ['-145', '-71', '-16', '-14', '9.1', '6.3', '-3.9', '-2.8', '-1.8',
|
| 220 |
+
'-1.3', '-0.9', '-0.8', '-0.2', '', '', '', '-0.5', '-0.01', '-0.2',
|
| 221 |
+
'-0.2', '-0.03', '']
|
| 222 |
+
LF_r = ['', '-7.0', '-108', '-225', '-29', '-4.2', '', '', '',
|
| 223 |
+
'', '', '', '', '', '', '', '', '', '', '-2.1', '-0.6', '-0.6']
|
| 224 |
+
MF_r = ['', '', '-0.9', '-2.2', '-0.3', '', '', '', '', '', '', '', '', '',
|
| 225 |
+
'', '', '', '', '', '', '', '']
|
| 226 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 227 |
+
ax.plot(xx, det, color='blue')
|
| 228 |
+
ii= 0
|
| 229 |
+
for x,y in zip(xx,det):
|
| 230 |
+
ax.annotate(det_r[ii],
|
| 231 |
+
(x,y),
|
| 232 |
+
textcoords="offset points",
|
| 233 |
+
xytext = (0,-50),
|
| 234 |
+
ha='center',
|
| 235 |
+
color = 'blue',
|
| 236 |
+
fontsize = 20,
|
| 237 |
+
rotation = -60)
|
| 238 |
+
ii+=1
|
| 239 |
+
ax.plot(xx, SF, '--', color='black')
|
| 240 |
+
ii= 0
|
| 241 |
+
for x,y in zip(xx,SF):
|
| 242 |
+
ax.annotate(SF_r[ii],
|
| 243 |
+
(x,y),
|
| 244 |
+
textcoords="offset points",
|
| 245 |
+
xytext = (0,-100),
|
| 246 |
+
ha='center',
|
| 247 |
+
color = 'black',
|
| 248 |
+
fontsize = 20,
|
| 249 |
+
rotation = -60)
|
| 250 |
+
ii+=1
|
| 251 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 252 |
+
ii= 0
|
| 253 |
+
for x,y in zip(xx,LF):
|
| 254 |
+
ax.annotate(LF_r[ii],
|
| 255 |
+
(x,y),
|
| 256 |
+
textcoords="offset points",
|
| 257 |
+
xytext = (0,-150),
|
| 258 |
+
ha='center',
|
| 259 |
+
color = 'orange',
|
| 260 |
+
fontsize = 20,
|
| 261 |
+
rotation = -60)
|
| 262 |
+
ii+=1
|
| 263 |
+
ax.plot(xx, MF, color='red')
|
| 264 |
+
ii= 0
|
| 265 |
+
for x,y in zip(xx,MF):
|
| 266 |
+
ax.annotate(MF_r[ii],
|
| 267 |
+
(x,y),
|
| 268 |
+
textcoords="offset points",
|
| 269 |
+
xytext = (0,-200),
|
| 270 |
+
ha='center',
|
| 271 |
+
color = 'red',
|
| 272 |
+
fontsize = 20,
|
| 273 |
+
rotation = -60)
|
| 274 |
+
ii+=1
|
| 275 |
+
ax.set_ylim([0,1])
|
| 276 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 277 |
+
ax.xaxis.set_label_coords(0.5, -0.6)
|
| 278 |
+
ax.set_xticks(onp.arange(nn))
|
| 279 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20, y=-0.45)
|
| 280 |
+
ax.tick_params(axis='x',colors='grey')
|
| 281 |
+
ax.set_ylabel('$R^2$')
|
| 282 |
+
plt.grid()
|
| 283 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 284 |
+
plt.show()
|
| 285 |
+
plt.savefig('glob_errors/R2_w_neg_moist.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 286 |
+
|
| 287 |
+
if CRPS == 1: # global CRPS plots
|
| 288 |
+
nn = 26
|
| 289 |
+
MF = onp.load('glob_errors/crps_rpn_MF.npy')[:26]
|
| 290 |
+
SF = onp.load('glob_errors/crps_rpn_SF.npy')[:26]
|
| 291 |
+
LF = onp.load('glob_errors/crps_rpn_LF.npy')[:26]
|
| 292 |
+
xx = onp.arange(nn)
|
| 293 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 294 |
+
plt.yscale("log")
|
| 295 |
+
ax.plot(xx, SF, '--', color='black')
|
| 296 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 297 |
+
ax.plot(xx, MF, color='red')
|
| 298 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 299 |
+
ax.set_xticks(onp.arange(nn))
|
| 300 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20)
|
| 301 |
+
ax.tick_params(axis='x',colors='grey')
|
| 302 |
+
plt.ylabel('CRPS')
|
| 303 |
+
plt.grid()
|
| 304 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 305 |
+
plt.show()
|
| 306 |
+
plt.savefig('glob_errors/CRPS_heat.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 307 |
+
|
| 308 |
+
nn = 22
|
| 309 |
+
MF = onp.load('glob_errors/crps_rpn_MF.npy')[26:]
|
| 310 |
+
SF = onp.load('glob_errors/crps_rpn_SF.npy')[26:]
|
| 311 |
+
LF = onp.load('glob_errors/crps_rpn_LF.npy')[26:]
|
| 312 |
+
press = press[4:]
|
| 313 |
+
xx = onp.arange(nn)
|
| 314 |
+
fig , ax = plt.subplots(figsize=(12,8))
|
| 315 |
+
plt.yscale("log")
|
| 316 |
+
ax.plot(xx, SF, '--', color='black')
|
| 317 |
+
ax.plot(xx, LF, '--', color='orange')
|
| 318 |
+
ax.plot(xx, MF, color='red')
|
| 319 |
+
ax.set_xlabel('Pressure (hPa)')
|
| 320 |
+
ax.set_xticks(onp.arange(nn))
|
| 321 |
+
ax.set_xticklabels(press, rotation =60, fontsize = 20)
|
| 322 |
+
ax.tick_params(axis='x',colors='grey')
|
| 323 |
+
plt.ylabel('CRPS')
|
| 324 |
+
plt.grid()
|
| 325 |
+
ax.legend(['Det. NN', 'SF-HF-RPN', 'LF-RPN', 'MF-RPN'], bbox_to_anchor=[0.5, 1.2], loc='center', ncol=4)
|
| 326 |
+
plt.show()
|
| 327 |
+
plt.savefig('glob_errors/CRPS_moist.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
8_pressure_lat_plots.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed Jun 21 09:32:40 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 12 |
+
plt.rc('font', family='serif')
|
| 13 |
+
plt.rcParams.update({'font.size': 46,
|
| 14 |
+
'lines.linewidth': 3,
|
| 15 |
+
'axes.labelsize': 46,
|
| 16 |
+
'axes.titlesize': 46,
|
| 17 |
+
'xtick.labelsize': 46,
|
| 18 |
+
'ytick.labelsize': 46,
|
| 19 |
+
'legend.fontsize': 46,
|
| 20 |
+
'axes.linewidth': 3,
|
| 21 |
+
"pgf.texsystem": "pdflatex"
|
| 22 |
+
})
|
| 23 |
+
|
| 24 |
+
lat = 96
|
| 25 |
+
x = np.linspace(-90, 90, lat)
|
| 26 |
+
y = np.array([3.5, 7.4, 14, 24, 37, 53, 70, 85, 100, 117,
|
| 27 |
+
137, 160, 188, 221, 259, 305, 358, 420, 494,
|
| 28 |
+
581, 673, 761, 837, 897, 937, 958])
|
| 29 |
+
X, Y = np.meshgrid(x, y)
|
| 30 |
+
Xm, Ym = np.meshgrid(x, y[4:])
|
| 31 |
+
|
| 32 |
+
r2_det = np.load('SF_results/r2_det_pres_lat.npy')
|
| 33 |
+
r2_SF = np.load('SF_results/r2_SF_pres_lat.npy')
|
| 34 |
+
r2_MF = np.load('MF_results/r2_MF_pres_lat.npy.npy')
|
| 35 |
+
r2_LF = np.load('MF_results/r2_LF_pres_lat.npy.npy')
|
| 36 |
+
|
| 37 |
+
dim_heat = 26
|
| 38 |
+
|
| 39 |
+
print('Create err plots')
|
| 40 |
+
|
| 41 |
+
mmin = 0
|
| 42 |
+
mmax = 1
|
| 43 |
+
levels = np.linspace(mmin, mmax, 8)
|
| 44 |
+
fig = plt.figure(figsize=(40, 15))
|
| 45 |
+
|
| 46 |
+
ax = fig.add_subplot(141)
|
| 47 |
+
ax.set_title("Deterministic NN")
|
| 48 |
+
contour_plot = ax.pcolor(X, Y, r2_det[:dim_heat,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 49 |
+
ax.contour(X, Y, r2_det[:dim_heat,:], [0.7], colors='pink', linewidths=[4])
|
| 50 |
+
ax.contour(X, Y, r2_det[:dim_heat,:], [0.9], colors='orange', linewidths=[4])
|
| 51 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 52 |
+
ax.set_ylabel("Pressure (hPa)")
|
| 53 |
+
|
| 54 |
+
ax = fig.add_subplot(142)
|
| 55 |
+
ax.set_title("SF-HF-RPN")
|
| 56 |
+
contour_plot = ax.pcolor(X, Y, r2_SF[:dim_heat,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 57 |
+
ax.contour(X, Y, r2_SF[:dim_heat,:], [0.7], colors='pink', linewidths=[4])
|
| 58 |
+
ax.contour(X, Y, r2_SF[:dim_heat,:], [0.9], colors='orange', linewidths=[4])
|
| 59 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 60 |
+
ax.set_yticks([])
|
| 61 |
+
ax.set_xlabel("Degrees Latitude")
|
| 62 |
+
ax.xaxis.set_label_coords(1.12, -0.1)
|
| 63 |
+
|
| 64 |
+
ax = fig.add_subplot(143)
|
| 65 |
+
ax.set_title("LF-RPN")
|
| 66 |
+
contour_plot = ax.pcolor(X, Y, r2_LF[:dim_heat,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 67 |
+
ax.contour(X, Y, r2_LF[:dim_heat,:], [0.7], colors='pink', linewidths=[4])
|
| 68 |
+
ax.contour(X, Y, r2_LF[:dim_heat,:], [0.9], colors='orange', linewidths=[4])
|
| 69 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 70 |
+
ax.set_yticks([])
|
| 71 |
+
|
| 72 |
+
ax = fig.add_subplot(144)
|
| 73 |
+
ax.set_title("MF-RPN")
|
| 74 |
+
contour_plot = ax.pcolor(X, Y, r2_MF[:dim_heat,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 75 |
+
ax.contour(X, Y, r2_MF[:dim_heat,:], [0.7], colors='pink', linewidths=[4])
|
| 76 |
+
ax.contour(X, Y, r2_MF[:dim_heat,:], [0.9], colors='orange', linewidths=[4])
|
| 77 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 78 |
+
ax.set_yticks([])
|
| 79 |
+
p3 = ax.get_position().get_points().flatten()
|
| 80 |
+
|
| 81 |
+
cbar_ax = fig.add_axes([0.92, 0.12, 0.02, 0.76])
|
| 82 |
+
fig.colorbar(contour_plot, label=r'$\mathrm{R^2}$', cax=cbar_ax)
|
| 83 |
+
plt.suptitle("Heat tendency")
|
| 84 |
+
plt.savefig('r2_press_lat_heat.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 85 |
+
|
| 86 |
+
mmin = 0
|
| 87 |
+
mmax = 1
|
| 88 |
+
levels = np.linspace(mmin, mmax, 8)
|
| 89 |
+
fig = plt.figure(figsize=(40, 15))
|
| 90 |
+
|
| 91 |
+
ax = fig.add_subplot(141)
|
| 92 |
+
ax.set_title("Deterministic NN")
|
| 93 |
+
contour_plot = ax.pcolor(Xm, Ym, r2_det[dim_heat:,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 94 |
+
ax.contour(Xm, Ym, r2_det[dim_heat:,:], [0.7], colors='pink', linewidths=[4])
|
| 95 |
+
ax.contour(Xm, Ym, r2_det[dim_heat:,:], [0.9], colors='orange', linewidths=[4])
|
| 96 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 97 |
+
ax.set_ylabel("Pressure (hPa)")
|
| 98 |
+
|
| 99 |
+
ax = fig.add_subplot(142)
|
| 100 |
+
ax.set_title("SF-HF-RPN")
|
| 101 |
+
contour_plot = ax.pcolor(Xm, Ym, r2_SF[dim_heat:,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 102 |
+
ax.contour(Xm, Ym, r2_SF[dim_heat:,:], [0.7], colors='pink', linewidths=[4])
|
| 103 |
+
ax.contour(Xm, Ym, r2_SF[dim_heat:,:], [0.9], colors='orange', linewidths=[4])
|
| 104 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 105 |
+
ax.set_yticks([])
|
| 106 |
+
ax.set_xlabel("Degrees Latitude")
|
| 107 |
+
ax.xaxis.set_label_coords(1.12, -0.1)
|
| 108 |
+
|
| 109 |
+
ax = fig.add_subplot(143)
|
| 110 |
+
ax.set_title("LF-RPN")
|
| 111 |
+
contour_plot = ax.pcolor(Xm, Ym, r2_LF[dim_heat:,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 112 |
+
ax.contour(Xm, Ym, r2_LF[dim_heat:,:], [0.7], colors='pink', linewidths=[4])
|
| 113 |
+
ax.contour(Xm, Ym, r2_LF[dim_heat:,:], [0.9], colors='orange', linewidths=[4])
|
| 114 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 115 |
+
ax.set_yticks([])
|
| 116 |
+
|
| 117 |
+
ax = fig.add_subplot(144)
|
| 118 |
+
ax.set_title("MF-RPN")
|
| 119 |
+
contour_plot = ax.pcolor(Xm, Ym, r2_MF[dim_heat:,:],cmap='Blues', vmin = mmin, vmax = mmax)
|
| 120 |
+
ax.contour(Xm, Ym, r2_MF[dim_heat:,:], [0.7], colors='pink', linewidths=[4])
|
| 121 |
+
ax.contour(Xm, Ym, r2_MF[dim_heat:,:], [0.9], colors='orange', linewidths=[4])
|
| 122 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 123 |
+
ax.set_yticks([])
|
| 124 |
+
p3 = ax.get_position().get_points().flatten()
|
| 125 |
+
|
| 126 |
+
cbar_ax = fig.add_axes([0.92, 0.12, 0.02, 0.76])
|
| 127 |
+
fig.colorbar(contour_plot, label=r'$\mathrm{R^2}$', cax=cbar_ax)
|
| 128 |
+
plt.suptitle("Moisture tendency")
|
| 129 |
+
plt.savefig('r2_press_lat_moist.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 130 |
+
|
8_uncertainty_density_plot.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Wed Aug 2 17:42:05 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as onp
|
| 10 |
+
|
| 11 |
+
from scipy.stats import kde
|
| 12 |
+
|
| 13 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 14 |
+
plt.rc('font', family='serif')
|
| 15 |
+
plt.rcParams.update({'font.size': 36,
|
| 16 |
+
'lines.linewidth': 2,
|
| 17 |
+
'axes.labelsize': 36,
|
| 18 |
+
'axes.titlesize': 36,
|
| 19 |
+
'xtick.labelsize': 36,
|
| 20 |
+
'ytick.labelsize': 36,
|
| 21 |
+
'legend.fontsize': 36,
|
| 22 |
+
'axes.linewidth': 2,
|
| 23 |
+
"pgf.texsystem": "pdflatex"
|
| 24 |
+
})
|
| 25 |
+
plt.rcParams['agg.path.chunksize'] = 20000
|
| 26 |
+
|
| 27 |
+
lat = 96
|
| 28 |
+
lon = 144
|
| 29 |
+
nt_total = 365*24
|
| 30 |
+
|
| 31 |
+
dim_y = 48
|
| 32 |
+
dim_heat = 26
|
| 33 |
+
dim_moist = 22
|
| 34 |
+
mu_error_out = onp.concatenate((onp.zeros((1,dim_heat),dtype=onp.float32),
|
| 35 |
+
onp.zeros((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 36 |
+
sigma_error_out = onp.concatenate((1/1004.6*onp.ones((1,dim_heat),dtype=onp.float32),
|
| 37 |
+
1/2.26e6*onp.ones((1,dim_moist),dtype=onp.float32)),axis=1)
|
| 38 |
+
mu_error_out = onp.array(mu_error_out,dtype=onp.float64)
|
| 39 |
+
sigma_error_out = onp.array(sigma_error_out,dtype=onp.float64)
|
| 40 |
+
|
| 41 |
+
is_SF = 0
|
| 42 |
+
is_MF = 0
|
| 43 |
+
is_LF = 1
|
| 44 |
+
|
| 45 |
+
ilist = [14, 18, 21, 36, 40, 43] # indices for tendencies at pressure levels 259, 494 and 761 hPa
|
| 46 |
+
ipress = [259, 494, 761, 259, 294, 761]
|
| 47 |
+
itend = ['heat', 'heat', 'heat', 'moist', 'moist', 'moist']
|
| 48 |
+
nbins = 100
|
| 49 |
+
epsilon = 0.125
|
| 50 |
+
fact_time = 4
|
| 51 |
+
fact_lon = 8
|
| 52 |
+
fact_lat = 8
|
| 53 |
+
|
| 54 |
+
onp.random.seed(1234)
|
| 55 |
+
|
| 56 |
+
import time
|
| 57 |
+
|
| 58 |
+
if is_MF == 1:
|
| 59 |
+
print('loading')
|
| 60 |
+
mean_rpn_MF = onp.load('MF_param/mean_RPN_MF_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 61 |
+
mean_rpn_MF = onp.array(mean_rpn_MF,dtype=onp.float64)
|
| 62 |
+
mean_rpn_MF = onp.reshape( mean_rpn_MF, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 63 |
+
mean_rpn_MF = mean_rpn_MF.T
|
| 64 |
+
mean_rpn_MF = (mean_rpn_MF-mu_error_out) / sigma_error_out
|
| 65 |
+
|
| 66 |
+
std_rpn_MF = onp.load('MF_param/std_RPN_MF_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 67 |
+
std_rpn_MF = onp.array(std_rpn_MF,dtype=onp.float64)
|
| 68 |
+
std_rpn_MF = onp.reshape( std_rpn_MF, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 69 |
+
std_rpn_MF = std_rpn_MF.T
|
| 70 |
+
std_rpn_MF = std_rpn_MF / sigma_error_out
|
| 71 |
+
|
| 72 |
+
test_yH = onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 73 |
+
test_yH = onp.array(test_yH,dtype=onp.float64)
|
| 74 |
+
test_yH = onp.reshape( test_yH, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 75 |
+
test_yH = test_yH.T
|
| 76 |
+
test_yH = (test_yH-mu_error_out) / sigma_error_out
|
| 77 |
+
|
| 78 |
+
for ii in range(len(ilist)):
|
| 79 |
+
i = ilist[ii]
|
| 80 |
+
print(i)
|
| 81 |
+
err_MF = onp.abs(mean_rpn_MF[:,i]-test_yH[:,i])
|
| 82 |
+
x = err_MF
|
| 83 |
+
y = std_rpn_MF[:,i]
|
| 84 |
+
Ntot = x.shape[0]
|
| 85 |
+
y = y[~onp.isnan(x)]
|
| 86 |
+
x = x[~onp.isnan(x)]
|
| 87 |
+
x = x[~onp.isnan(y)]
|
| 88 |
+
y = y[~onp.isnan(y)]
|
| 89 |
+
ind = onp.argsort(x)
|
| 90 |
+
x = x[ind]
|
| 91 |
+
y = y[ind]
|
| 92 |
+
x = x[:Ntot-int(epsilon*Ntot)]
|
| 93 |
+
y = y[:Ntot-int(epsilon*Ntot)]
|
| 94 |
+
ind = onp.argsort(y)
|
| 95 |
+
x = x[ind]
|
| 96 |
+
y = y[ind]
|
| 97 |
+
x = onp.sqrt(x[:Ntot-2*int(epsilon*Ntot)])
|
| 98 |
+
y = y[:Ntot-2*int(epsilon*Ntot)]
|
| 99 |
+
|
| 100 |
+
tt = time.time()
|
| 101 |
+
k = kde.gaussian_kde([x,y])
|
| 102 |
+
xi, yi = onp.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
|
| 103 |
+
zi = k(onp.vstack([xi.flatten(), yi.flatten()]))
|
| 104 |
+
zi = zi.reshape(xi.shape)
|
| 105 |
+
print('gaussian_kde', time.time()-tt )
|
| 106 |
+
|
| 107 |
+
fig = plt.figure(figsize=(12,12))
|
| 108 |
+
ax = fig.add_subplot(111)
|
| 109 |
+
plt.pcolormesh(xi, yi, zi, shading='gouraud', cmap=plt.cm.jet)
|
| 110 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 111 |
+
plt.colorbar()
|
| 112 |
+
ax.set_xlabel('Error')
|
| 113 |
+
ax.set_ylabel(r'$\sigma_M$')
|
| 114 |
+
plt.savefig('uncertainty_density_plots/MF_uncert_dens_'+itend[ii]+'_'+str(ipress[ii])+'_hPa.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 115 |
+
|
| 116 |
+
if is_LF == 1:
|
| 117 |
+
print('loading')
|
| 118 |
+
mean_rpn_MF = onp.load('MF_param/mean_RPN_LF_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 119 |
+
mean_rpn_MF = onp.array(mean_rpn_MF,dtype=onp.float64)
|
| 120 |
+
mean_rpn_MF = onp.reshape( mean_rpn_MF, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 121 |
+
mean_rpn_MF = mean_rpn_MF.T
|
| 122 |
+
mean_rpn_MF = (mean_rpn_MF-mu_error_out) / sigma_error_out
|
| 123 |
+
|
| 124 |
+
std_rpn_MF = onp.load('MF_param/std_RPN_LF_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 125 |
+
std_rpn_MF = onp.array(std_rpn_MF,dtype=onp.float64)
|
| 126 |
+
std_rpn_MF = onp.reshape( std_rpn_MF, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 127 |
+
std_rpn_MF = std_rpn_MF.T
|
| 128 |
+
std_rpn_MF = std_rpn_MF / sigma_error_out
|
| 129 |
+
|
| 130 |
+
test_yH = onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 131 |
+
test_yH = onp.array(test_yH,dtype=onp.float64)
|
| 132 |
+
test_yH = onp.reshape( test_yH, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 133 |
+
test_yH = test_yH.T
|
| 134 |
+
test_yH = (test_yH-mu_error_out) / sigma_error_out
|
| 135 |
+
|
| 136 |
+
for ii in range(len(ilist)):
|
| 137 |
+
i = ilist[ii]
|
| 138 |
+
print(i)
|
| 139 |
+
err_MF = onp.abs(mean_rpn_MF[:,i]-test_yH[:,i])
|
| 140 |
+
x = err_MF
|
| 141 |
+
y = std_rpn_MF[:,i]
|
| 142 |
+
Ntot = x.shape[0]
|
| 143 |
+
y = y[~onp.isnan(x)]
|
| 144 |
+
x = x[~onp.isnan(x)]
|
| 145 |
+
x = x[~onp.isnan(y)]
|
| 146 |
+
y = y[~onp.isnan(y)]
|
| 147 |
+
ind = onp.argsort(x)
|
| 148 |
+
x = x[ind]
|
| 149 |
+
y = y[ind]
|
| 150 |
+
x = x[:Ntot-int(epsilon*Ntot)]
|
| 151 |
+
y = y[:Ntot-int(epsilon*Ntot)]
|
| 152 |
+
ind = onp.argsort(y)
|
| 153 |
+
x = x[ind]
|
| 154 |
+
y = y[ind]
|
| 155 |
+
x = onp.sqrt(x[:Ntot-2*int(epsilon*Ntot)])
|
| 156 |
+
y = y[:Ntot-2*int(epsilon*Ntot)]
|
| 157 |
+
|
| 158 |
+
tt = time.time()
|
| 159 |
+
k = kde.gaussian_kde([x,y])
|
| 160 |
+
xi, yi = onp.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
|
| 161 |
+
zi = k(onp.vstack([xi.flatten(), yi.flatten()]))
|
| 162 |
+
zi = zi.reshape(xi.shape)
|
| 163 |
+
print('gaussian_kde', time.time()-tt )
|
| 164 |
+
|
| 165 |
+
fig = plt.figure(figsize=(12,12))
|
| 166 |
+
ax = fig.add_subplot(111)
|
| 167 |
+
plt.pcolormesh(xi, yi, zi, shading='gouraud', cmap=plt.cm.jet)
|
| 168 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 169 |
+
plt.colorbar()
|
| 170 |
+
ax.set_xlabel('Error')
|
| 171 |
+
ax.set_ylabel(r'$\sigma_M$')
|
| 172 |
+
plt.savefig('uncertainty_density_plots/LF_uncert_dens_'+itend[ii]+'_'+str(ipress[ii])+'_hPa.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 173 |
+
|
| 174 |
+
if is_SF == 1:
|
| 175 |
+
print('loading')
|
| 176 |
+
mean_rpn = onp.load('SF_param/mean_RPN_SF_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 177 |
+
mean_rpn = onp.array(mean_rpn,dtype=onp.float64)
|
| 178 |
+
mean_rpn = onp.reshape( mean_rpn, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 179 |
+
mean_rpn = mean_rpn.T
|
| 180 |
+
mean_rpn = (mean_rpn-mu_error_out) / sigma_error_out
|
| 181 |
+
|
| 182 |
+
std_rpn = onp.load('SF_param/std_RPN_SF_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 183 |
+
std_rpn = onp.array(std_rpn,dtype=onp.float64)
|
| 184 |
+
std_rpn = onp.reshape( std_rpn, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 185 |
+
std_rpn = std_rpn.T
|
| 186 |
+
std_rpn = std_rpn / sigma_error_out
|
| 187 |
+
|
| 188 |
+
test_yH = onp.load('data_SPCAM5_4K/all_outputs_reshaped.npy')[:,::fact_time,::fact_lat,::fact_lon]
|
| 189 |
+
test_yH = onp.array(test_yH,dtype=onp.float64)
|
| 190 |
+
test_yH = onp.reshape( test_yH, ( dim_y, (nt_total*lat*lon)//(fact_time*fact_lon*fact_lat) ) )
|
| 191 |
+
test_yH = test_yH.T
|
| 192 |
+
test_yH = (test_yH-mu_error_out) / sigma_error_out
|
| 193 |
+
|
| 194 |
+
for ii in range(len(ilist)):
|
| 195 |
+
i = ilist[ii]
|
| 196 |
+
print(i)
|
| 197 |
+
err = onp.abs(mean_rpn[:,i]-test_yH[:,i])
|
| 198 |
+
x = err
|
| 199 |
+
y = std_rpn[:,i]
|
| 200 |
+
Ntot = x.shape[0]
|
| 201 |
+
y = y[~onp.isnan(x)]
|
| 202 |
+
x = x[~onp.isnan(x)]
|
| 203 |
+
x = x[~onp.isnan(y)]
|
| 204 |
+
y = y[~onp.isnan(y)]
|
| 205 |
+
ind = onp.argsort(x)
|
| 206 |
+
x = x[ind]
|
| 207 |
+
y = y[ind]
|
| 208 |
+
x = x[:Ntot-int(epsilon*Ntot)]
|
| 209 |
+
y = y[:Ntot-int(epsilon*Ntot)]
|
| 210 |
+
ind = onp.argsort(y)
|
| 211 |
+
x = x[ind]
|
| 212 |
+
y = y[ind]
|
| 213 |
+
x = onp.sqrt(x[:Ntot-2*int(epsilon*Ntot)])
|
| 214 |
+
y = y[:Ntot-2*int(epsilon*Ntot)]
|
| 215 |
+
|
| 216 |
+
tt = time.time()
|
| 217 |
+
k = kde.gaussian_kde([x,y])
|
| 218 |
+
xi, yi = onp.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
|
| 219 |
+
zi = k(onp.vstack([xi.flatten(), yi.flatten()]))
|
| 220 |
+
zi = zi.reshape(xi.shape)
|
| 221 |
+
print('gaussian_kde', time.time()-tt )
|
| 222 |
+
|
| 223 |
+
fig = plt.figure(figsize=(12,12))
|
| 224 |
+
ax = fig.add_subplot(111)
|
| 225 |
+
plt.pcolormesh(xi, yi, zi, shading='gouraud', cmap=plt.cm.jet)
|
| 226 |
+
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
|
| 227 |
+
plt.colorbar()
|
| 228 |
+
ax.set_xlabel('Error')
|
| 229 |
+
ax.set_ylabel(r'$\sigma_M$')
|
| 230 |
+
plt.savefig('uncertainty_density_plots/SF_uncert_dens_'+itend[ii]+'_'+str(ipress[ii])+'_hPa.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
|
| 231 |
+
|
9_uncertainty_video.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Fri Sep 8 07:35:08 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
from mpl_toolkits.basemap import Basemap
|
| 11 |
+
from moviepy.editor import VideoClip
|
| 12 |
+
from moviepy.video.io.bindings import mplfig_to_npimage
|
| 13 |
+
|
| 14 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 15 |
+
plt.rc('font', family='serif')
|
| 16 |
+
plt.rcParams.update({'font.size': 16,
|
| 17 |
+
'lines.linewidth': 2,
|
| 18 |
+
'axes.labelsize': 20,
|
| 19 |
+
'axes.titlesize': 20,
|
| 20 |
+
'xtick.labelsize': 16,
|
| 21 |
+
'ytick.labelsize': 16,
|
| 22 |
+
'legend.fontsize': 20,
|
| 23 |
+
'axes.linewidth': 2,
|
| 24 |
+
"pgf.texsystem": "pdflatex"
|
| 25 |
+
})
|
| 26 |
+
|
| 27 |
+
lat = 96
|
| 28 |
+
lon = 144
|
| 29 |
+
|
| 30 |
+
x = np.linspace(0, 360-360/144, lon)
|
| 31 |
+
y = np.linspace(-90, 90, lat)
|
| 32 |
+
X, Y = np.meshgrid(x, y)
|
| 33 |
+
|
| 34 |
+
dim_heat = 26
|
| 35 |
+
dim_moist = 22
|
| 36 |
+
mu_error_out = np.concatenate((np.zeros((1,dim_heat),dtype=np.float32),
|
| 37 |
+
np.zeros((1,dim_moist),dtype=np.float32)),axis=1)
|
| 38 |
+
mu_error_out = mu_error_out.T[:,:,None,None]
|
| 39 |
+
sigma_error_out = np.concatenate((1/1004.6*np.ones((1,dim_heat),dtype=np.float32),
|
| 40 |
+
1/2.26e6*np.ones((1,dim_moist),dtype=np.float32)),axis=1)
|
| 41 |
+
sigma_error_out = sigma_error_out.T[:,:,None,None]
|
| 42 |
+
|
| 43 |
+
y_var = 43 # 14, 18, 21, 36, 40, 43
|
| 44 |
+
|
| 45 |
+
if y_var == 14:
|
| 46 |
+
ttl = 'Heat tendency at 259 hPa'
|
| 47 |
+
ttl_s = 'videos/instant_heat_tend_259.mp4'
|
| 48 |
+
elif y_var == 18:
|
| 49 |
+
ttl = 'Heat tendency at 494 hPa'
|
| 50 |
+
ttl_s = 'videos/instant_heat_tend_494.mp4'
|
| 51 |
+
elif y_var == 21:
|
| 52 |
+
ttl = 'Heat tendency at 761 hPa'
|
| 53 |
+
ttl_s = 'videos/instant_heat_tend_761.mp4'
|
| 54 |
+
elif y_var == 36:
|
| 55 |
+
ttl = 'Moisture tendency at 259 hPa'
|
| 56 |
+
ttl_s = 'videos/instant_moist_tend_259.mp4'
|
| 57 |
+
elif y_var == 40:
|
| 58 |
+
ttl = 'Moisture tendency at 494 hPa'
|
| 59 |
+
ttl_s = 'videos/instant_moist_tend_494.mp4'
|
| 60 |
+
elif y_var == 43:
|
| 61 |
+
ttl = 'Moisture tendency at 761 hPa'
|
| 62 |
+
ttl_s = 'videos/instant_moist_tend_761.mp4'
|
| 63 |
+
|
| 64 |
+
test = (np.load('data_SPCAM5_4K/all_outputs_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 65 |
+
test = np.array(test,dtype=np.float64)
|
| 66 |
+
|
| 67 |
+
months = ['Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Jan']
|
| 68 |
+
days = np.array([28, 28+31, 28+31+30, 28+31+30+31, 28+31+30+31+30, 28+31+30+31+30+31,
|
| 69 |
+
28+31+30+31+30+31+31, 28+31+30+31+30+31+31+30, 28+31+30+31+30+31+31+30+31,
|
| 70 |
+
28+31+30+31+30+31+31+30+31+30, 28+31+30+31+30+31+31+30+31+30+31,
|
| 71 |
+
28+31+30+31+30+31+31+30+31+30+31+31])
|
| 72 |
+
hours = 24*days
|
| 73 |
+
|
| 74 |
+
std_rpn_MF = np.load('MF_param/mean_RPN_MF_reshaped.npy')[y_var:y_var+1,:,:,:]/ sigma_error_out
|
| 75 |
+
mean_rpn_MF = (np.load('MF_param/std_RPN_MF_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 76 |
+
mean_rpn_MF = np.array(mean_rpn_MF,dtype=np.float64)
|
| 77 |
+
std_rpn_MF = np.array(std_rpn_MF,dtype=np.float64)
|
| 78 |
+
|
| 79 |
+
std_rpn_LF = np.load('MF_param/mean_RPN_LF_reshaped.npy')[y_var:y_var+1,:,:,:]/ sigma_error_out
|
| 80 |
+
mean_rpn_LF = (np.load('MF_param/std_RPN_LF_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 81 |
+
mean_rpn_LF = np.array(mean_rpn_LF,dtype=np.float64)
|
| 82 |
+
std_rpn_LF = np.array(std_rpn_LF,dtype=np.float64)
|
| 83 |
+
|
| 84 |
+
std_rpn_SF = np.load('SF_param/mean_RPN_SF_reshaped.npy')[y_var:y_var+1,:,:,:]/ sigma_error_out
|
| 85 |
+
mean_rpn_SF = (np.load('SF_param/std_RPN_SF_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 86 |
+
std_rpn_SF = np.array(std_rpn_SF,dtype=np.float64)
|
| 87 |
+
mean_rpn_SF = np.array(mean_rpn_SF,dtype=np.float64)
|
| 88 |
+
|
| 89 |
+
MAE_MF = np.abs( test-mean_rpn_MF )
|
| 90 |
+
MAE_LF = np.abs( test-mean_rpn_LF )
|
| 91 |
+
MAE_SF = np.abs( test-mean_rpn_SF )
|
| 92 |
+
|
| 93 |
+
N_frame = std_rpn_MF.shape[1]
|
| 94 |
+
|
| 95 |
+
fps = 5
|
| 96 |
+
duration = N_frame / fps
|
| 97 |
+
|
| 98 |
+
fig = plt.figure(figsize=(31.5, 14))
|
| 99 |
+
|
| 100 |
+
def create_fr(t):
|
| 101 |
+
print(t,int(t*fps))
|
| 102 |
+
fig.clf()
|
| 103 |
+
|
| 104 |
+
ax1 = fig.add_subplot(231)
|
| 105 |
+
ax1.set_title("MF-RPN - MAE")
|
| 106 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 107 |
+
contour_plot = m.pcolormesh(X, Y, MAE_MF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 108 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 109 |
+
|
| 110 |
+
ax2 = fig.add_subplot(234)
|
| 111 |
+
ax2.set_title("MF-RPN - Uncertainty "+r'$\sigma_M$')
|
| 112 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 113 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_MF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 114 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 115 |
+
#############################################
|
| 116 |
+
ax1 = fig.add_subplot(232)
|
| 117 |
+
ax1.set_title("SF-RPN - MAE")
|
| 118 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 119 |
+
contour_plot = m.pcolormesh(X, Y, MAE_SF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 120 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 121 |
+
|
| 122 |
+
ax2 = fig.add_subplot(235)
|
| 123 |
+
ax2.set_title("SF-RPN - Uncertainty "+r'$\sigma_M$')
|
| 124 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 125 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_SF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 126 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 127 |
+
#############################################
|
| 128 |
+
ax1 = fig.add_subplot(233)
|
| 129 |
+
ax1.set_title("LF-RPN - MAE")
|
| 130 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 131 |
+
contour_plot = m.pcolormesh(X, Y, MAE_LF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 132 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 133 |
+
|
| 134 |
+
ax2 = fig.add_subplot(236)
|
| 135 |
+
ax2.set_title("LF-RPN - Uncertainty "+r'$\sigma_M$')
|
| 136 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 137 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_LF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 138 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 139 |
+
|
| 140 |
+
imonths = np.argmax(hours>int(t*fps))
|
| 141 |
+
nhour = int(t*fps) % 24
|
| 142 |
+
if nhour<10:
|
| 143 |
+
nhour = '0'+str(nhour)
|
| 144 |
+
else:
|
| 145 |
+
nhour = str(nhour)
|
| 146 |
+
|
| 147 |
+
if imonths == 0:
|
| 148 |
+
nday = 1+int(t*fps)//24
|
| 149 |
+
else:
|
| 150 |
+
nday = int(t*fps)//24-days[imonths-1]+1
|
| 151 |
+
|
| 152 |
+
if nday<10:
|
| 153 |
+
nday = '0'+str(nday)
|
| 154 |
+
else:
|
| 155 |
+
nday = str(nday)
|
| 156 |
+
if imonths == 11:
|
| 157 |
+
ty = '2004'
|
| 158 |
+
else:
|
| 159 |
+
ty = '2003'
|
| 160 |
+
|
| 161 |
+
fig.suptitle(ttl + ' ; '+nday+' '+months[imonths]+' '+ty+' ; '+nhour+':00')
|
| 162 |
+
|
| 163 |
+
plt.margins(x=0)
|
| 164 |
+
plt.margins(y=0)
|
| 165 |
+
plt.subplots_adjust(hspace=-0.3)
|
| 166 |
+
fig.subplots_adjust(top=0.85)
|
| 167 |
+
plt.tight_layout()
|
| 168 |
+
|
| 169 |
+
fig.canvas.draw()
|
| 170 |
+
cbar_ax = fig.add_axes([0.05, 0.02, 0.9, 0.05])
|
| 171 |
+
cbar = fig.colorbar(contour_plot, orientation='horizontal', cax=cbar_ax)
|
| 172 |
+
cbar.set_ticks([])
|
| 173 |
+
|
| 174 |
+
return mplfig_to_npimage(fig)
|
| 175 |
+
|
| 176 |
+
animation = VideoClip(create_fr, duration = duration)
|
| 177 |
+
|
| 178 |
+
animation.write_videofile(ttl_s,fps=fps,threads=16,
|
| 179 |
+
logger=None,codec="mpeg4",preset="slow",ffmpeg_params=['-b:v','10000k'])
|
| 180 |
+
|
9_uncertainty_video_daily.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Fri Sep 8 08:12:39 2023
|
| 5 |
+
|
| 6 |
+
@author: mohamedazizbhouri
|
| 7 |
+
"""
|
| 8 |
+
from matplotlib import pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
from mpl_toolkits.basemap import Basemap
|
| 11 |
+
from moviepy.editor import VideoClip
|
| 12 |
+
from moviepy.video.io.bindings import mplfig_to_npimage
|
| 13 |
+
|
| 14 |
+
plt.rcParams.update(plt.rcParamsDefault)
|
| 15 |
+
plt.rc('font', family='serif')
|
| 16 |
+
plt.rcParams.update({'font.size': 16,
|
| 17 |
+
'lines.linewidth': 2,
|
| 18 |
+
'axes.labelsize': 20,
|
| 19 |
+
'axes.titlesize': 20,
|
| 20 |
+
'xtick.labelsize': 16,
|
| 21 |
+
'ytick.labelsize': 16,
|
| 22 |
+
'legend.fontsize': 20,
|
| 23 |
+
'axes.linewidth': 2,
|
| 24 |
+
"pgf.texsystem": "pdflatex"
|
| 25 |
+
})
|
| 26 |
+
|
| 27 |
+
lat = 96
|
| 28 |
+
lon = 144
|
| 29 |
+
|
| 30 |
+
x = np.linspace(0, 360-360/144, lon)
|
| 31 |
+
y = np.linspace(-90, 90, lat)
|
| 32 |
+
X, Y = np.meshgrid(x, y)
|
| 33 |
+
|
| 34 |
+
dim_heat = 26
|
| 35 |
+
dim_moist = 22
|
| 36 |
+
mu_error_out = np.concatenate((np.zeros((1,dim_heat),dtype=np.float32),
|
| 37 |
+
np.zeros((1,dim_moist),dtype=np.float32)),axis=1)
|
| 38 |
+
mu_error_out = mu_error_out.T[:,:,None,None]
|
| 39 |
+
sigma_error_out = np.concatenate((1/1004.6*np.ones((1,dim_heat),dtype=np.float32),
|
| 40 |
+
1/2.26e6*np.ones((1,dim_moist),dtype=np.float32)),axis=1)
|
| 41 |
+
sigma_error_out = sigma_error_out.T[:,:,None,None]
|
| 42 |
+
|
| 43 |
+
y_var = 43 # 14, 18, 21, 36, 40, 43
|
| 44 |
+
|
| 45 |
+
if y_var == 14:
|
| 46 |
+
ttl = 'Heat tendency at 259 hPa'
|
| 47 |
+
ttl_s = 'videos/daily_heat_tend_259.mp4'
|
| 48 |
+
elif y_var == 18:
|
| 49 |
+
ttl = 'Heat tendency at 494 hPa'
|
| 50 |
+
ttl_s = 'videos/daily_heat_tend_494.mp4'
|
| 51 |
+
elif y_var == 21:
|
| 52 |
+
ttl = 'Heat tendency at 761 hPa'
|
| 53 |
+
ttl_s = 'videos/daily_heat_tend_761.mp4'
|
| 54 |
+
elif y_var == 36:
|
| 55 |
+
ttl = 'Moisture tendency at 259 hPa'
|
| 56 |
+
ttl_s = 'videos/daily_moist_tend_259.mp4'
|
| 57 |
+
elif y_var == 40:
|
| 58 |
+
ttl = 'Moisture tendency at 494 hPa'
|
| 59 |
+
ttl_s = 'videos/daily_moist_tend_494.mp4'
|
| 60 |
+
elif y_var == 43:
|
| 61 |
+
ttl = 'Moisture tendency at 761 hPa'
|
| 62 |
+
ttl_s = 'videos/daily_moist_tend_761.mp4'
|
| 63 |
+
|
| 64 |
+
test = (np.load('data_SPCAM5_4K/all_outputs_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 65 |
+
test = np.array(test,dtype=np.float64)
|
| 66 |
+
|
| 67 |
+
N_dt_day = 24 # we have a dt=1hour
|
| 68 |
+
def daily_avg(test):
|
| 69 |
+
test_daily = []
|
| 70 |
+
N_time_steps = test.shape[1]
|
| 71 |
+
for i in range(test.shape[0]):
|
| 72 |
+
test_daily.append( np.mean( test[i,:,:,:].reshape( (N_time_steps//N_dt_day, N_dt_day, lat, lon) ), axis=1 ) )
|
| 73 |
+
return np.array(test_daily)
|
| 74 |
+
|
| 75 |
+
months = ['Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Jan']
|
| 76 |
+
days = np.array([28, 28+31, 28+31+30, 28+31+30+31, 28+31+30+31+30, 28+31+30+31+30+31,
|
| 77 |
+
28+31+30+31+30+31+31, 28+31+30+31+30+31+31+30, 28+31+30+31+30+31+31+30+31,
|
| 78 |
+
28+31+30+31+30+31+31+30+31+30, 28+31+30+31+30+31+31+30+31+30+31,
|
| 79 |
+
28+31+30+31+30+31+31+30+31+30+31+31])
|
| 80 |
+
|
| 81 |
+
std_rpn_MF = np.load('MF_param/mean_RPN_MF_reshaped.npy')[y_var:y_var+1,:,:,:]/ sigma_error_out
|
| 82 |
+
mean_rpn_MF = (np.load('MF_param/std_RPN_MF_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 83 |
+
mean_rpn_MF = np.array(mean_rpn_MF,dtype=np.float64)
|
| 84 |
+
std_rpn_MF = np.array(std_rpn_MF,dtype=np.float64)
|
| 85 |
+
|
| 86 |
+
std_rpn_LF = np.load('MF_param/mean_RPN_LF_reshaped.npy')[y_var:y_var+1,:,:,:]/ sigma_error_out
|
| 87 |
+
mean_rpn_LF = (np.load('MF_param/std_RPN_LF_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 88 |
+
mean_rpn_LF = np.array(mean_rpn_LF,dtype=np.float64)
|
| 89 |
+
std_rpn_LF = np.array(std_rpn_LF,dtype=np.float64)
|
| 90 |
+
|
| 91 |
+
std_rpn_SF = np.load('SF_param/mean_RPN_SF_reshaped.npy')[y_var:y_var+1,:,:,:]/ sigma_error_out
|
| 92 |
+
mean_rpn_SF = (np.load('SF_param/std_RPN_SF_reshaped.npy')[y_var:y_var+1,:,:,:] - mu_error_out) / sigma_error_out
|
| 93 |
+
std_rpn_SF = np.array(std_rpn_SF,dtype=np.float64)
|
| 94 |
+
mean_rpn_SF = np.array(mean_rpn_SF,dtype=np.float64)
|
| 95 |
+
|
| 96 |
+
test = daily_avg(test)
|
| 97 |
+
|
| 98 |
+
mean_rpn_MF = daily_avg(mean_rpn_MF)
|
| 99 |
+
MAE_MF = np.abs( test-mean_rpn_MF )
|
| 100 |
+
std_rpn_MF = daily_avg(std_rpn_MF )
|
| 101 |
+
|
| 102 |
+
mean_rpn_LF = daily_avg(mean_rpn_LF)
|
| 103 |
+
MAE_LF = np.abs( test-mean_rpn_LF )
|
| 104 |
+
std_rpn_LF = daily_avg(std_rpn_LF )
|
| 105 |
+
|
| 106 |
+
mean_rpn_SF = daily_avg(mean_rpn_SF)
|
| 107 |
+
MAE_SF = np.abs( test-mean_rpn_SF )
|
| 108 |
+
std_rpn_SF = daily_avg(std_rpn_SF )
|
| 109 |
+
|
| 110 |
+
N_frame = std_rpn_MF.shape[1]
|
| 111 |
+
|
| 112 |
+
fps = 5
|
| 113 |
+
duration = N_frame / fps
|
| 114 |
+
|
| 115 |
+
fig = plt.figure(figsize=(31.5, 14))
|
| 116 |
+
|
| 117 |
+
def create_fr(t):
|
| 118 |
+
print(t,int(t*fps))
|
| 119 |
+
fig.clf()
|
| 120 |
+
|
| 121 |
+
ax1 = fig.add_subplot(231)
|
| 122 |
+
ax1.set_title("MF-RPN - MAE")
|
| 123 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 124 |
+
contour_plot = m.pcolormesh(X, Y, MAE_MF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 125 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 126 |
+
|
| 127 |
+
ax2 = fig.add_subplot(234)
|
| 128 |
+
ax2.set_title("MF-RPN - Uncertainty "+r'$\sigma_M$')
|
| 129 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 130 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_MF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 131 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 132 |
+
#############################################
|
| 133 |
+
ax1 = fig.add_subplot(232)
|
| 134 |
+
ax1.set_title("SF-RPN - MAE")
|
| 135 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 136 |
+
contour_plot = m.pcolormesh(X, Y, MAE_SF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 137 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 138 |
+
|
| 139 |
+
ax2 = fig.add_subplot(235)
|
| 140 |
+
ax2.set_title("SF-RPN - Uncertainty "+r'$\sigma_M$')
|
| 141 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 142 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_SF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 143 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 144 |
+
#############################################
|
| 145 |
+
ax1 = fig.add_subplot(233)
|
| 146 |
+
ax1.set_title("LF-RPN - MAE")
|
| 147 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 148 |
+
contour_plot = m.pcolormesh(X, Y, MAE_LF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 149 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 150 |
+
|
| 151 |
+
ax2 = fig.add_subplot(236)
|
| 152 |
+
ax2.set_title("LF-RPN - Uncertainty "+r'$\sigma_M$')
|
| 153 |
+
m = Basemap(projection='robin',lon_0=-180)
|
| 154 |
+
contour_plot = m.pcolormesh(X, Y, std_rpn_LF[0,int(t*fps),:,:], latlon = True,cmap='Blues_r')
|
| 155 |
+
m.drawcoastlines(linewidth=2.0, color='0.25')
|
| 156 |
+
|
| 157 |
+
imonths = np.argmax(days>int(t*fps))
|
| 158 |
+
if imonths == 0:
|
| 159 |
+
nday = 1+int(t*fps)
|
| 160 |
+
else:
|
| 161 |
+
nday = int(t*fps)-days[imonths-1]+1
|
| 162 |
+
|
| 163 |
+
if nday<10:
|
| 164 |
+
nday = '0'+str(nday)
|
| 165 |
+
else:
|
| 166 |
+
nday = str(nday)
|
| 167 |
+
if imonths == 11:
|
| 168 |
+
ty = '2004'
|
| 169 |
+
else:
|
| 170 |
+
ty = '2003'
|
| 171 |
+
|
| 172 |
+
fig.suptitle(ttl + ' ; '+nday+' '+months[imonths]+' '+ty)
|
| 173 |
+
|
| 174 |
+
plt.margins(x=0)
|
| 175 |
+
plt.margins(y=0)
|
| 176 |
+
plt.subplots_adjust(hspace=-0.3)
|
| 177 |
+
fig.subplots_adjust(top=0.85)
|
| 178 |
+
plt.tight_layout()
|
| 179 |
+
|
| 180 |
+
fig.canvas.draw()
|
| 181 |
+
cbar_ax = fig.add_axes([0.05, 0.02, 0.9, 0.05])
|
| 182 |
+
cbar = fig.colorbar(contour_plot, orientation='horizontal', cax=cbar_ax)
|
| 183 |
+
cbar.set_ticks([])
|
| 184 |
+
|
| 185 |
+
return mplfig_to_npimage(fig)
|
| 186 |
+
|
| 187 |
+
animation = VideoClip(create_fr, duration = duration)
|
| 188 |
+
|
| 189 |
+
animation.write_videofile(ttl_s,fps=fps,threads=16,
|
| 190 |
+
logger=None,codec="mpeg4",preset="slow",ffmpeg_params=['-b:v','10000k'])
|
| 191 |
+
|
candle_plots_1st_lvl_SS_moist_tend.png
ADDED
|
Git LFS Details
|
candle_plots_5_pr_lvls_heat_tend_and_spec_hum.png
ADDED
|
Git LFS Details
|
glob_errors/CRPS_heat.png
ADDED
|
Git LFS Details
|
glob_errors/CRPS_moist.png
ADDED
|
Git LFS Details
|
glob_errors/MAE_det.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c342cc7ec43ca5c6164d304ca6c7b4447bf99a3f02fd54ffc7e4efc89f124e0a
|
| 3 |
+
size 512
|
glob_errors/MAE_heat.png
ADDED
|
Git LFS Details
|
glob_errors/MAE_moist.png
ADDED
|
Git LFS Details
|
glob_errors/MAE_rpn_LF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:562a07db14263eae7d1261dd7c56359b5c38149b753d0d0a810a74c0fe30a151
|
| 3 |
+
size 512
|
glob_errors/MAE_rpn_MF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5577c7592c0214e8782e1aa48d00d27ad45ba48015d89ab49922a5a9a4020f55
|
| 3 |
+
size 512
|
glob_errors/MAE_rpn_SF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce893d9f63d38d7ec447d849e67a7c17ea39bd0afbc8f33dd5f420502e027425
|
| 3 |
+
size 512
|
glob_errors/R2_w_neg_heat.png
ADDED
|
Git LFS Details
|
glob_errors/R2_w_neg_moist.png
ADDED
|
Git LFS Details
|
glob_errors/R2_wo_neg_heat.png
ADDED
|
Git LFS Details
|
glob_errors/R2_wo_neg_moist.png
ADDED
|
Git LFS Details
|
glob_errors/crps_rpn_LF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4cf1a806aae144f312e9b52cdb5c6baf929a610808733849249c137ab6d1c53
|
| 3 |
+
size 512
|
glob_errors/crps_rpn_MF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bcd62b16e0a312312891e7ee91e681b1d829641ca4a9c96e0367b96471361db1
|
| 3 |
+
size 512
|
glob_errors/crps_rpn_SF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d49f7e362a73d790bbe5086bf82401ce9c33ec854d7db9ff3bff8b2f3156259e
|
| 3 |
+
size 512
|
glob_errors/r2_det.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3fbca7a2cb93a40551df4069a12ef51f12cd2f869babd12166da51e268ea5108
|
| 3 |
+
size 512
|
glob_errors/r2_rpn_LF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4f687a080dfe89d723c164b090f01ee94411ad122391dc91a00ec25bf7701b4
|
| 3 |
+
size 512
|
glob_errors/r2_rpn_MF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1fdb303fb32516358605e33d67cd5b150217db22d19bf3304d35822f3250d18a
|
| 3 |
+
size 512
|
glob_errors/r2_rpn_SF.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8936fef5314015e37d42ee8bf9ceed196f95067d4712b5517280c77224357e76
|
| 3 |
+
size 512
|
long_lat_plots/heat_MAE_long_lat_0.png
ADDED
|
Git LFS Details
|
long_lat_plots/heat_MAE_long_lat_1.png
ADDED
|
Git LFS Details
|