#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 19 23:40:45 2023 @author: mohamedazizbhouri """ import numpy as np is_input = 0 # 0 or 1 case_var = 'moist' # 'moist' or 'heat' if is_input == 0 sim = 'CAM' # 'CAM' or 'SPCAM' if sim == 'CAM': if is_input == 1: X = np.load('data_CAM5_8K/all_inputs.npy') X = np.array(X,dtype=np.float64) mu_X_CAM5, sigma_X_CAM5 = [], [] # we do not use the vectorial format of computing mean and std on purpose # in order to avoid the risk of precision error given the dataset size for i in range(X.shape[1]): mu_X_CAM5.append(np.mean(X[:,i])) sigma_X_CAM5.append(np.std(X[:,i])) mu_X_CAM5 = np.array(np.array(mu_X_CAM5),dtype=np.float32) sigma_X_CAM5 = np.array(np.array(sigma_X_CAM5),dtype=np.float32) np.save('norm/mu_X_CAM5.npy',mu_X_CAM5) np.save('norm/sigma_X_CAM5.npy',sigma_X_CAM5) else: if case_var == 'moist': X = np.load('data_CAM5_8K/all_outputs_moist.npy') X = np.array(X,dtype=np.float64) mu_y_moist_CAM5, sigma_y_moist_CAM5 = [], [] for i in range(X.shape[1]): mu_y_moist_CAM5.append(np.mean(X[:,i])) sigma_y_moist_CAM5.append(np.std(X[:,i])) mu_y_moist_CAM5 = np.array(np.array(mu_y_moist_CAM5),dtype=np.float32) sigma_y_moist_CAM5 = np.array(np.array(sigma_y_moist_CAM5),dtype=np.float32) np.save('norm/mu_y_moist_CAM5.npy',mu_y_moist_CAM5) np.save('norm/sigma_y_moist_CAM5.npy',sigma_y_moist_CAM5) else: X = np.load('data_CAM5_8K/all_outputs_heat.npy') X = np.array(X,dtype=np.float64) mu_y_heat_CAM5, sigma_y_heat_CAM5 = [], [] for i in range(X.shape[1]): mu_y_heat_CAM5.append(np.mean(X[:,i])) sigma_y_heat_CAM5.append(np.std(X[:,i])) mu_y_heat_CAM5 = np.array(np.array(mu_y_heat_CAM5),dtype=np.float32) sigma_y_heat_CAM5 = np.array(np.array(sigma_y_heat_CAM5),dtype=np.float32) np.save('norm/mu_y_heat_CAM5.npy',mu_y_heat_CAM5) np.save('norm/sigma_y_heat_CAM5.npy',sigma_y_heat_CAM5) elif sim == 'SPCAM': if is_input == 1: X = np.load('data_SPCAM5_hist/three_month_inputs.npy') X = np.array(X,dtype=np.float64) mu_X_SPCAM5, sigma_X_SPCAM5 = [], [] # we do not use the vectorial format of computing mean and std on purpose # in order to avoid the risk of precision error given the dataset size for i in range(X.shape[1]): mu_X_SPCAM5.append(np.mean(X[:,i])) sigma_X_SPCAM5.append(np.std(X[:,i])) mu_X_SPCAM5 = np.array(np.array(mu_X_SPCAM5),dtype=np.float32) sigma_X_SPCAM5 = np.array(np.array(sigma_X_SPCAM5),dtype=np.float32) np.save('norm/mu_X_SPCAM5.npy',mu_X_SPCAM5) np.save('norm/sigma_X_SPCAM5.npy',sigma_X_SPCAM5) else: if case_var == 'moist': X = np.load('data_SPCAM5_hist/three_month_outputs_moist.npy') X = np.array(X,dtype=np.float64) mu_y_moist_SPCAM5, sigma_y_moist_SPCAM5 = [], [] for i in range(X.shape[1]): mu_y_moist_SPCAM5.append(np.mean(X[:,i])) sigma_y_moist_SPCAM5.append(np.std(X[:,i])) mu_y_moist_SPCAM5 = np.array(np.array(mu_y_moist_SPCAM5),dtype=np.float32) sigma_y_moist_SPCAM5 = np.array(np.array(sigma_y_moist_SPCAM5),dtype=np.float32) np.save('norm/mu_y_moist_SPCAM5.npy',mu_y_moist_SPCAM5) np.save('norm/sigma_y_moist_SPCAM5.npy',sigma_y_moist_SPCAM5) else: X = np.load('data_SPCAM5_hist/three_month_outputs_heat.npy') X = np.array(X,dtype=np.float64) mu_y_heat_SPCAM5, sigma_y_heat_SPCAM5 = [], [] for i in range(X.shape[1]): mu_y_heat_SPCAM5.append(np.mean(X[:,i])) sigma_y_heat_SPCAM5.append(np.std(X[:,i])) mu_y_heat_SPCAM5 = np.array(np.array(mu_y_heat_SPCAM5),dtype=np.float32) sigma_y_heat_SPCAM5 = np.array(np.array(sigma_y_heat_SPCAM5),dtype=np.float32) np.save('norm/mu_y_heat_SPCAM5.npy',mu_y_heat_SPCAM5) np.save('norm/sigma_y_heat_SPCAM5.npy',sigma_y_heat_SPCAM5)