Nicole-Yi commited on
Commit
4a5e815
·
verified ·
1 Parent(s): 7459bf0

Upload 103 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. test_scripts/AnimeGANv3_01/test_script.py +126 -0
  2. test_scripts/AnimeGANv3_02/test_script.py +125 -0
  3. test_scripts/AnimeGANv3_03/test_script.py +197 -0
  4. test_scripts/DeOldify_01/test_script.py +119 -0
  5. test_scripts/DeOldify_02/test_script.py +113 -0
  6. test_scripts/DeOldify_03/test_script.py +102 -0
  7. test_scripts/DeScratch_01/detection.py +178 -0
  8. test_scripts/DeScratch_01/test_script.py +133 -0
  9. test_scripts/DeScratch_02/test_script.py +121 -0
  10. test_scripts/DeScratch_03/test_script.py +97 -0
  11. test_scripts/Eparse_01/test_script.py +418 -0
  12. test_scripts/Eparse_02/test_script.py +360 -0
  13. test_scripts/Eparse_03/test_script.py +224 -0
  14. test_scripts/Faker_01/test_script.py +78 -0
  15. test_scripts/Faker_02/test_script.py +118 -0
  16. test_scripts/Faker_03/test_script.py +112 -0
  17. test_scripts/FunASR_01/test_script.py +122 -0
  18. test_scripts/FunASR_02/test_script.py +134 -0
  19. test_scripts/FunASR_03/test_script.py +135 -0
  20. test_scripts/InvisibleWatermark_01/imwatermark/__init__.py +1 -0
  21. test_scripts/InvisibleWatermark_01/imwatermark/dwtDctSvd.py +108 -0
  22. test_scripts/InvisibleWatermark_01/imwatermark/maxDct.py +134 -0
  23. test_scripts/InvisibleWatermark_01/imwatermark/rivaGan.py +69 -0
  24. test_scripts/InvisibleWatermark_01/imwatermark/rivagan_decoder.onnx +3 -0
  25. test_scripts/InvisibleWatermark_01/imwatermark/rivagan_encoder.onnx +3 -0
  26. test_scripts/InvisibleWatermark_01/imwatermark/watermark.py +171 -0
  27. test_scripts/InvisibleWatermark_01/test_script.py +100 -0
  28. test_scripts/InvisibleWatermark_02/imwatermark/__init__.py +1 -0
  29. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/__init__.cpython-312.pyc +0 -0
  30. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/__init__.cpython-37.pyc +0 -0
  31. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/__init__.cpython-38.pyc +0 -0
  32. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/dwtDctSvd.cpython-312.pyc +0 -0
  33. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/maxDct.cpython-312.pyc +0 -0
  34. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/maxDct.cpython-37.pyc +0 -0
  35. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/maxDct.cpython-38.pyc +0 -0
  36. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/rivaGan.cpython-312.pyc +0 -0
  37. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/watermark.cpython-312.pyc +0 -0
  38. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/watermark.cpython-37.pyc +0 -0
  39. test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/watermark.cpython-38.pyc +0 -0
  40. test_scripts/InvisibleWatermark_02/imwatermark/dwtDctSvd.py +108 -0
  41. test_scripts/InvisibleWatermark_02/imwatermark/maxDct.py +134 -0
  42. test_scripts/InvisibleWatermark_02/imwatermark/rivaGan.py +69 -0
  43. test_scripts/InvisibleWatermark_02/imwatermark/rivagan_decoder.onnx +3 -0
  44. test_scripts/InvisibleWatermark_02/imwatermark/rivagan_encoder.onnx +3 -0
  45. test_scripts/InvisibleWatermark_02/imwatermark/watermark.py +171 -0
  46. test_scripts/InvisibleWatermark_02/test_script.py +83 -0
  47. test_scripts/InvisibleWatermark_03/imwatermark/__init__.py +1 -0
  48. test_scripts/InvisibleWatermark_03/imwatermark/__pycache__/__init__.cpython-311.pyc +0 -0
  49. test_scripts/InvisibleWatermark_03/imwatermark/__pycache__/__init__.cpython-312.pyc +0 -0
  50. test_scripts/InvisibleWatermark_03/imwatermark/__pycache__/__init__.cpython-37.pyc +0 -0
test_scripts/AnimeGANv3_01/test_script.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import sys
4
+ import argparse
5
+ import json
6
+ import datetime
7
+ import cv2
8
+ import torch
9
+ import lpips
10
+ from torchvision import transforms
11
+ import torch.nn.functional as F
12
+ from PIL import Image, UnidentifiedImageError
13
+
14
+ def verify_image(path, exts=('.png','.jpg','.jpeg','.webp')):
15
+ """Check file existence, non-empty, valid extension, and PIL readability."""
16
+ if not os.path.isfile(path):
17
+ return False, f'File does not exist: {path}'
18
+ if os.path.getsize(path) == 0:
19
+ return False, f'File is empty: {path}'
20
+ if not path.lower().endswith(exts):
21
+ return False, f'Unsupported format: {path}'
22
+ try:
23
+ img = Image.open(path)
24
+ img.verify()
25
+ except (UnidentifiedImageError, Exception) as e:
26
+ return False, f'Failed to read image: {path} ({e})'
27
+ return True, ''
28
+
29
+ def load_tensor(path):
30
+ """Load and normalize Tensor to [-1,1] as per original script"""
31
+ img = cv2.imread(path, cv2.IMREAD_COLOR)
32
+ if img is None:
33
+ raise RuntimeError(f'cv2 read failed: {path}')
34
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
35
+ t = transforms.ToTensor()(img) * 2 - 1
36
+ return t.unsqueeze(0)
37
+
38
+ def main():
39
+ p = argparse.ArgumentParser(description='Automated anime effect evaluation script')
40
+ p.add_argument('--groundtruth', required=True, help='Original image path')
41
+ p.add_argument('--output', required=True, help='Anime-styled output image path')
42
+ p.add_argument('--lpips-thresh', type=float, default=0.30,
43
+ help='LPIPS distance threshold (Pass if >= threshold)')
44
+ p.add_argument('--clip-thresh', type=float, default=0.25,
45
+ help='CLIP Hayao style similarity threshold (Pass if > threshold)')
46
+ p.add_argument('--result', required=True, help='Result JSONL file path (append mode)')
47
+ args = p.parse_args()
48
+
49
+ process = True
50
+ comments = []
51
+
52
+ # 1. Validate input/output files
53
+ for tag, path in [('input', args.groundtruth), ('output', args.output)]:
54
+ ok, msg = verify_image(path)
55
+ if not ok:
56
+ process = False
57
+ comments.append(f'[{tag}] {msg}')
58
+
59
+ # 2. Calculate LPIPS (only if process==True)
60
+ lpips_val = None
61
+ result_flag = False
62
+ if process:
63
+ try:
64
+ img0 = load_tensor(args.groundtruth)
65
+ img1 = load_tensor(args.output)
66
+ # Align dimensions
67
+ _, _, h0, w0 = img0.shape
68
+ _, _, h1, w1 = img1.shape
69
+ nh, nw = min(h0,h1), min(w0,w1)
70
+ if (h0,w0) != (nh,nw):
71
+ img0 = F.interpolate(img0, size=(nh,nw), mode='bilinear', align_corners=False)
72
+ if (h1,w1) != (nh,nw):
73
+ img1 = F.interpolate(img1, size=(nh,nw), mode='bilinear', align_corners=False)
74
+
75
+ loss_fn = lpips.LPIPS(net='vgg').to(torch.device('cpu'))
76
+ with torch.no_grad():
77
+ lpips_val = float(loss_fn(img0, img1).item())
78
+
79
+ passed = lpips_val >= args.lpips_thresh
80
+ comments.append(f'LPIPS={lpips_val:.4f} (>= {args.lpips_thresh} → {"OK" if passed else "FAIL"})')
81
+ result_flag = passed
82
+
83
+ except Exception as e:
84
+ process = False
85
+ comments.append(f'Metric calculation error: {e}')
86
+
87
+ # 3. CLIP Hayao style similarity check (only if process==True)
88
+ if process:
89
+ try:
90
+ import clip
91
+ import PIL.Image
92
+ device = "cuda" if torch.cuda.is_available() else "cpu"
93
+ clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
94
+
95
+ image = clip_preprocess(PIL.Image.open(args.output)).unsqueeze(0).to(device)
96
+ hayao_tokens = clip.tokenize(["a landscape in Hayao Miyazaki anime style"]).to(device)
97
+
98
+ with torch.no_grad():
99
+ image_features = clip_model.encode_image(image)
100
+ text_features = clip_model.encode_text(hayao_tokens)
101
+
102
+ image_features /= image_features.norm(dim=-1, keepdim=True)
103
+ text_features /= text_features.norm(dim=-1, keepdim=True)
104
+
105
+ hayao_score = (image_features @ text_features.T).item()
106
+
107
+ passed = hayao_score > args.clip_thresh
108
+ comments.append(f"CLIP Hayao style score = {hayao_score:.3f} (threshold = {args.clip_thresh} → {'OK' if passed else 'FAIL'})")
109
+ result_flag = result_flag and passed
110
+
111
+ except Exception as e:
112
+ comments.append(f"CLIP style check failed: {e}")
113
+
114
+ # 4. Write JSONL result
115
+ entry = {
116
+ "Process": process,
117
+ "Result": result_flag,
118
+ "TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'),
119
+ "comments": "; ".join(comments)
120
+ }
121
+ os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True)
122
+ with open(args.result, 'a', encoding='utf-8') as f:
123
+ f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n")
124
+
125
+ if __name__ == "__main__":
126
+ main()
test_scripts/AnimeGANv3_02/test_script.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import sys
4
+ import argparse
5
+ import json
6
+ import datetime
7
+ import cv2
8
+ import torch
9
+ import lpips
10
+ from torchvision import transforms
11
+ import torch.nn.functional as F
12
+ from PIL import Image, UnidentifiedImageError
13
+
14
+ def verify_image(path, exts=('.png','.jpg','.jpeg','.webp')):
15
+ if not os.path.isfile(path):
16
+ return False, f'File does not exist: {path}'
17
+ if os.path.getsize(path) == 0:
18
+ return False, f'File is empty: {path}'
19
+ if not path.lower().endswith(exts):
20
+ return False, f'Unsupported format: {path}'
21
+ try:
22
+ img = Image.open(path)
23
+ img.verify()
24
+ except (UnidentifiedImageError, Exception) as e:
25
+ return False, f'Failed to read image: {path} ({e})'
26
+ return True, ''
27
+
28
+ def load_tensor(path):
29
+ img = cv2.imread(path, cv2.IMREAD_COLOR)
30
+ if img is None:
31
+ raise RuntimeError(f'cv2 read failed: {path}')
32
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
33
+ t = transforms.ToTensor()(img) * 2 - 1
34
+ return t.unsqueeze(0)
35
+
36
+ def main():
37
+ p = argparse.ArgumentParser(description='Automated anime effect evaluation script')
38
+ p.add_argument('--groundtruth', required=True, help='Original image path')
39
+ p.add_argument('--output', required=True, help='Anime-styled output image path')
40
+ p.add_argument('--lpips-thresh', type=float, default=0.40,
41
+ help='LPIPS structural similarity max distance (Pass if <= threshold)')
42
+ p.add_argument('--clip-thresh', type=float, default=0.25,
43
+ help='CLIP anime style similarity threshold (Pass if > threshold)')
44
+ p.add_argument('--result', required=True, help='Result JSONL file path (append mode)')
45
+ args = p.parse_args()
46
+
47
+ process = True
48
+ comments = []
49
+
50
+ # 1. Validate input/output files
51
+ for tag, path in [('input', args.groundtruth), ('output', args.output)]:
52
+ ok, msg = verify_image(path)
53
+ if not ok:
54
+ process = False
55
+ comments.append(f'[{tag}] {msg}')
56
+
57
+ lpips_val = None
58
+ lpips_pass = True
59
+ clip_pass = False
60
+ if process:
61
+ try:
62
+ # 2. LPIPS structure preservation check
63
+ img0 = load_tensor(args.groundtruth)
64
+ img1 = load_tensor(args.output)
65
+ _, _, h0, w0 = img0.shape
66
+ _, _, h1, w1 = img1.shape
67
+ nh, nw = min(h0,h1), min(w0,w1)
68
+ img0 = F.interpolate(img0, size=(nh,nw), mode='bilinear', align_corners=False)
69
+ img1 = F.interpolate(img1, size=(nh,nw), mode='bilinear', align_corners=False)
70
+
71
+ loss_fn = lpips.LPIPS(net='vgg').to(torch.device('cpu'))
72
+ with torch.no_grad():
73
+ lpips_val = float(loss_fn(img0, img1).item())
74
+ lpips_pass = lpips_val <= args.lpips_thresh
75
+ comments.append(f'LPIPS={lpips_val:.4f} (<= {args.lpips_thresh} → {"OK" if lpips_pass else "FAIL"})')
76
+ except Exception as e:
77
+ process = False
78
+ comments.append(f'Metric calculation error: {e}')
79
+
80
+ if process:
81
+ try:
82
+ import clip
83
+ import PIL.Image
84
+ device = "cuda" if torch.cuda.is_available() else "cpu"
85
+ clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
86
+
87
+ image = clip_preprocess(PIL.Image.open(args.output)).unsqueeze(0).to(device)
88
+ prompt_list = [
89
+ "anime-style photo",
90
+ "cartoon photo",
91
+ "anime drawing",
92
+ "photo in manga style",
93
+ "Hayao Miyazaki anime style"
94
+ ]
95
+ tokens = clip.tokenize(prompt_list).to(device)
96
+
97
+ with torch.no_grad():
98
+ image_features = clip_model.encode_image(image)
99
+ text_features = clip_model.encode_text(tokens)
100
+ image_features /= image_features.norm(dim=-1, keepdim=True)
101
+ text_features /= text_features.norm(dim=-1, keepdim=True)
102
+ scores = (image_features @ text_features.T).squeeze(0)
103
+ best_score = scores.max().item()
104
+
105
+ clip_pass = best_score > args.clip_thresh
106
+ comments.append(f'CLIP best anime style score = {best_score:.3f} (>{args.clip_thresh} → {"OK" if clip_pass else "FAIL"})')
107
+
108
+ except Exception as e:
109
+ comments.append(f"CLIP style check failed: {e}")
110
+
111
+ result_flag = process and lpips_pass and clip_pass
112
+
113
+ # 4. Write JSONL result
114
+ entry = {
115
+ "Process": process,
116
+ "Result": result_flag,
117
+ "TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'),
118
+ "comments": "; ".join(comments)
119
+ }
120
+ os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True)
121
+ with open(args.result, 'a', encoding='utf-8') as f:
122
+ f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n")
123
+
124
+ if __name__ == "__main__":
125
+ main()
test_scripts/AnimeGANv3_03/test_script.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import numpy as np
4
+ from skimage.metrics import structural_similarity as ssim
5
+ import torch
6
+ import torchvision.models as models
7
+ import torchvision.transforms as transforms
8
+ from scipy.linalg import sqrtm
9
+ import os
10
+ import json
11
+ from datetime import datetime
12
+
13
+
14
+ def extract_frames(video_path, max_frames=100):
15
+ """Extract frames from video, limiting maximum frames for efficiency"""
16
+ cap = cv2.VideoCapture(video_path)
17
+ frames = []
18
+ count = 0
19
+ while cap.isOpened() and count < max_frames:
20
+ ret, frame = cap.read()
21
+ if not ret:
22
+ break
23
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
24
+ frames.append(frame)
25
+ count += 1
26
+ cap.release()
27
+ return frames
28
+
29
+
30
+ def compute_ssim(input_frames, output_frames):
31
+ """Calculate average SSIM between input and output frames"""
32
+ ssim_scores = []
33
+ for in_frame, out_frame in zip(input_frames, output_frames):
34
+ # Resize frames if dimensions don't match
35
+ min_shape = (min(in_frame.shape[0], out_frame.shape[0]),
36
+ min(in_frame.shape[1], out_frame.shape[1]))
37
+ in_frame = cv2.resize(in_frame, min_shape[::-1])
38
+ out_frame = cv2.resize(out_frame, min_shape[::-1])
39
+ # Convert to grayscale for SSIM calculation
40
+ in_gray = cv2.cvtColor(in_frame, cv2.COLOR_RGB2GRAY)
41
+ out_gray = cv2.cvtColor(out_frame, cv2.COLOR_RGB2GRAY)
42
+ score = ssim(in_gray, out_gray, data_range=255)
43
+ ssim_scores.append(score)
44
+ return np.mean(ssim_scores) if ssim_scores else 0.0
45
+
46
+
47
+ def get_inception_features(frames, model, transform, device):
48
+ """Extract Inception V3 features for FID calculation"""
49
+ features = []
50
+ for frame in frames:
51
+ img = cv2.resize(frame, (299, 299))
52
+ img = transform(img).unsqueeze(0).to(device)
53
+ with torch.no_grad():
54
+ feat = model(img).squeeze().cpu().numpy()
55
+ features.append(feat)
56
+ return np.array(features)
57
+
58
+
59
+ def compute_fid(input_frames, output_frames):
60
+ """Calculate FID between input and output frames using Inception V3"""
61
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
62
+ inception = models.inception_v3(pretrained=True, transform_input=False).eval().to(device)
63
+
64
+ transform = transforms.Compose([
65
+ transforms.ToTensor(),
66
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
67
+ ])
68
+
69
+ input_features = get_inception_features(input_frames, inception, transform, device)
70
+ output_features = get_inception_features(output_frames, inception, transform, device)
71
+
72
+ # Calculate mean and covariance
73
+ mu1, sigma1 = np.mean(input_features, axis=0), np.cov(input_features, rowvar=False)
74
+ mu2, sigma2 = np.mean(output_features, axis=0), np.cov(output_features, rowvar=False)
75
+
76
+ # Calculate FID
77
+ diff = mu1 - mu2
78
+ covmean = sqrtm(sigma1.dot(sigma2))
79
+ if np.iscomplexobj(covmean):
80
+ covmean = covmean.real
81
+ fid = diff.dot(diff) + np.trace(sigma1 + sigma2 - 2 * covmean)
82
+ return fid
83
+
84
+
85
+ def evaluate_animeganv3(input_video, output_video, ssim_threshold=0.7, fid_threshold=400):
86
+ """Evaluate AnimeGANv3 stylization effect using SSIM and FID"""
87
+ messages = []
88
+ messages.append(f"Evaluating videos:\nInput video: {input_video}\nOutput video: {output_video}")
89
+
90
+ # Extract frames
91
+ input_frames = extract_frames(input_video)
92
+ output_frames = extract_frames(output_video)
93
+
94
+ if len(input_frames) == 0 or len(output_frames) == 0:
95
+ messages.append("Error: Failed to extract frames from one or both videos.")
96
+ return False, "\n".join(messages)
97
+
98
+ if len(input_frames) != len(output_frames):
99
+ messages.append("Warning: Input and output videos have different frame counts.")
100
+ min_frames = min(len(input_frames), len(output_frames))
101
+ input_frames = input_frames[:min_frames]
102
+ output_frames = output_frames[:min_frames]
103
+
104
+ # Calculate SSIM
105
+ avg_ssim = compute_ssim(input_frames, output_frames)
106
+ messages.append(f"Average SSIM: {avg_ssim:.4f}")
107
+
108
+ # Calculate FID
109
+ fid_score = compute_fid(input_frames, output_frames)
110
+ messages.append(f"FID score: {fid_score:.2f}")
111
+
112
+ # Compare with thresholds
113
+ ssim_pass = avg_ssim >= ssim_threshold
114
+ fid_pass = fid_score <= fid_threshold
115
+ success = ssim_pass and fid_pass
116
+
117
+ result_message = f"\nEvaluation results:\n"
118
+ result_message += f"SSIM (≥ {ssim_threshold}): {'Pass' if ssim_pass else 'Fail'} ({avg_ssim:.4f})\n"
119
+ result_message += f"FID (≤ {fid_threshold}): {'Pass' if fid_pass else 'Fail'} ({fid_score:.2f})\n"
120
+ result_message += f"Overall success: {'Yes' if success else 'No'}"
121
+ messages.append(result_message)
122
+
123
+ return success, "\n".join(messages)
124
+
125
+
126
+ def is_valid_video_file(file_path):
127
+ """Check if file exists, is non-empty and has valid video format (.mp4)"""
128
+ if not os.path.exists(file_path):
129
+ return False, f"File {file_path} does not exist."
130
+ if os.path.getsize(file_path) == 0:
131
+ return False, f"File {file_path} is empty."
132
+ if not file_path.lower().endswith('.mp4'):
133
+ return False, f"File {file_path} has incorrect format, only .mp4 supported."
134
+ return True, ""
135
+
136
+
137
+ def main():
138
+ parser = argparse.ArgumentParser(description="Evaluate AnimeGANv3 video stylization effect")
139
+ parser.add_argument("-i", "--groundtruth", required=True, help="Input video file path")
140
+ parser.add_argument("-o", "--output", required=True, help="Output video file path")
141
+ parser.add_argument("--ssim_threshold", type=float, default=0.7, help="SSIM success threshold")
142
+ parser.add_argument("--fid_threshold", type=float, default=400.0, help="FID success threshold")
143
+ parser.add_argument("--result", help="JSONL file path to save results")
144
+
145
+ args = parser.parse_args()
146
+
147
+ # Collect all output messages
148
+ messages = []
149
+ success = False
150
+ process_valid = True
151
+
152
+ # Validate input files
153
+ input_valid, input_error = is_valid_video_file(args.groundtruth)
154
+ output_valid, output_error = is_valid_video_file(args.output)
155
+
156
+ if not input_valid:
157
+ messages.append(input_error)
158
+ process_valid = False
159
+ if not output_valid:
160
+ messages.append(output_error)
161
+ process_valid = False
162
+
163
+ # If inputs are valid, run evaluation
164
+ if process_valid:
165
+ success, eval_message = evaluate_animeganv3(
166
+ args.groundtruth,
167
+ args.output,
168
+ args.ssim_threshold,
169
+ args.fid_threshold
170
+ )
171
+ messages.append(eval_message)
172
+ else:
173
+ messages.append("Evaluation not run due to input file validation failure.")
174
+
175
+ # Print all messages
176
+ print("\n".join(messages))
177
+
178
+ # If --result is specified, save to JSONL
179
+ # Modified result saving section in main() function:
180
+ if args.result:
181
+ result_entry = {
182
+ "Process": process_valid,
183
+ "Result": success,
184
+ "TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
185
+ "comments": "\n".join(messages)
186
+ }
187
+ try:
188
+ os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True)
189
+ with open(args.result, 'a', encoding='utf-8') as f:
190
+ json_line = json.dumps(result_entry, ensure_ascii=False, default=str)
191
+ f.write(json_line + '\n') # Ensure newline append
192
+ except Exception as e:
193
+ print(f"Error: Failed to save results to {args.result}, reason: {str(e)}")
194
+
195
+
196
+ if __name__ == "__main__":
197
+ main()
test_scripts/DeOldify_01/test_script.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import argparse
4
+ import json
5
+ from datetime import datetime
6
+ import requests
7
+ from io import BytesIO
8
+
9
+ import numpy as np
10
+ from PIL import Image
11
+ from skimage.color import rgb2lab, deltaE_ciede2000
12
+ from basicsr.metrics.niqe import calculate_niqe
13
+
14
+ def download_image(path_or_url: str) -> Image.Image:
15
+ """Download or read local image, return PIL.Image in RGB mode."""
16
+ if path_or_url.startswith(('http://', 'https://')):
17
+ resp = requests.get(path_or_url, timeout=10)
18
+ if resp.status_code != 200:
19
+ raise ValueError(f"Failed to download image: {path_or_url} (status code {resp.status_code})")
20
+ data = BytesIO(resp.content)
21
+ else:
22
+ if not os.path.isfile(path_or_url):
23
+ raise ValueError(f"File does not exist: {path_or_url}")
24
+ data = path_or_url
25
+ try:
26
+ return Image.open(data).convert('RGB')
27
+ except Exception as e:
28
+ raise ValueError(f"Failed to open image: {e}")
29
+
30
+ def compute_ciede2000(ref_img: Image.Image, test_img: Image.Image) -> float:
31
+ arr_ref = np.asarray(ref_img, dtype=np.float32) / 255.0
32
+ arr_test = np.asarray(test_img, dtype=np.float32) / 255.0
33
+ lab_ref = rgb2lab(arr_ref)
34
+ lab_test = rgb2lab(arr_test)
35
+ delta = deltaE_ciede2000(lab_ref, lab_test)
36
+ return float(np.mean(delta))
37
+
38
+ def compute_niqe(img: Image.Image) -> float:
39
+ arr = np.asarray(img).astype(np.float32)
40
+ return float(calculate_niqe(arr, crop_border=0))
41
+
42
+ def write_result_jsonl(file_path: str, data: dict):
43
+ """Append single result to file in JSONL format."""
44
+ try:
45
+ os.makedirs(os.path.dirname(file_path), exist_ok=True)
46
+ with open(file_path, 'a', encoding='utf-8') as f:
47
+ f.write(json.dumps(data, ensure_ascii=False, default=str) + '\n')
48
+ except Exception as e:
49
+ print(f"❌ Error writing JSONL file: {e}", file=sys.stderr)
50
+
51
+ def main():
52
+ p = argparse.ArgumentParser(
53
+ description="Evaluate colorization/enhancement effect using CIEDE2000 and NIQE metrics, with JSONL output option")
54
+ p.add_argument("--groundtruth", type=str, required=True, help="Reference image URL or local path")
55
+ p.add_argument("--output", type=str, required=True, help="Reconstructed image URL or local path")
56
+ p.add_argument("--ciede-thresh", type=float, required=True,
57
+ help="CIEDE2000 minimum acceptance threshold (higher is better)")
58
+ p.add_argument("--niqe-thresh", type=float, required=True,
59
+ help="NIQE maximum acceptance threshold (lower is better)")
60
+ p.add_argument("--result", help="File path to store JSONL results")
61
+ args = p.parse_args()
62
+
63
+ process_ok = True
64
+ comments = []
65
+
66
+ # Timestamp
67
+ time_point = datetime.now().isoformat()
68
+
69
+ # Load images
70
+ try:
71
+ img_ref = download_image(args.groundtruth)
72
+ img_recon = download_image(args.output)
73
+ except ValueError as err:
74
+ comments.append(str(err))
75
+ process_ok = False
76
+
77
+ # Calculate metrics only if Process OK
78
+ if process_ok:
79
+ try:
80
+ score_ciede = compute_ciede2000(img_ref, img_recon)
81
+ score_niqe = compute_niqe(img_recon)
82
+
83
+ comments.append(f"CIEDE2000 average color difference: {score_ciede:.4f} (threshold {args.ciede_thresh})")
84
+ comments.append(f"Reconstructed image NIQE score: {score_niqe:.4f} (threshold {args.niqe_thresh})")
85
+
86
+ ok_ciede = score_ciede >= args.ciede_thresh
87
+ ok_niqe = score_niqe <= args.niqe_thresh
88
+
89
+ if ok_ciede and ok_niqe:
90
+ comments.append("✅ Processing effect meets requirements: CIEDE2000↑ and NIQE↓ both satisfy thresholds")
91
+ result_ok = True
92
+ else:
93
+ fail_reasons = []
94
+ if not ok_ciede: fail_reasons.append("CIEDE2000 not met")
95
+ if not ok_niqe: fail_reasons.append("NIQE not met")
96
+ comments.append("❌ Processing effect does not meet requirements: " + " ".join(fail_reasons))
97
+ result_ok = False
98
+ except Exception as e:
99
+ comments.append(f"Exception during metric calculation: {e}")
100
+ result_ok = False
101
+ else:
102
+ result_ok = False
103
+
104
+ # Write to JSONL if --result is specified
105
+ if args.result:
106
+ record = {
107
+ "Process": process_ok,
108
+ "Result": result_ok,
109
+ "TimePoint": time_point,
110
+ "comments": "\n".join(comments)
111
+ }
112
+ write_result_jsonl(args.result, record)
113
+
114
+ # Print all comments
115
+ for line in comments:
116
+ print(line, file=(sys.stderr if not process_ok or not result_ok else sys.stdout))
117
+
118
+ if __name__ == "__main__":
119
+ main()
test_scripts/DeOldify_02/test_script.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import argparse
4
+ import json
5
+ from datetime import datetime
6
+ import requests
7
+ from io import BytesIO
8
+
9
+ import numpy as np
10
+ from PIL import Image
11
+ from skimage.color import rgb2lab, deltaE_ciede2000
12
+ from basicsr.metrics.niqe import calculate_niqe
13
+
14
+ def download_image(path_or_url: str) -> Image.Image:
15
+ """Download or read local image, return PIL.Image in RGB mode."""
16
+ if path_or_url.startswith(('http://', 'https://')):
17
+ resp = requests.get(path_or_url, timeout=10)
18
+ if resp.status_code != 200:
19
+ raise ValueError(f"Failed to download image: {path_or_url} (status code {resp.status_code})")
20
+ data = BytesIO(resp.content)
21
+ else:
22
+ if not os.path.isfile(path_or_url):
23
+ raise ValueError(f"File does not exist: {path_or_url}")
24
+ data = path_or_url
25
+ try:
26
+ return Image.open(data).convert('RGB')
27
+ except Exception as e:
28
+ raise ValueError(f"Failed to open image: {e}")
29
+
30
+ def compute_ciede2000(ref_img: Image.Image, test_img: Image.Image) -> float:
31
+ arr_ref = np.asarray(ref_img, dtype=np.float32) / 255.0
32
+ arr_test = np.asarray(test_img, dtype=np.float32) / 255.0
33
+ lab_ref = rgb2lab(arr_ref)
34
+ lab_test = rgb2lab(arr_test)
35
+ delta = deltaE_ciede2000(lab_ref, lab_test)
36
+ return float(np.mean(delta))
37
+
38
+ def compute_niqe(img: Image.Image) -> float:
39
+ arr = np.asarray(img).astype(np.float32)
40
+ return float(calculate_niqe(arr, crop_border=0))
41
+
42
+ def write_result_jsonl(file_path: str, data: dict):
43
+ """Append single result to file in JSONL format."""
44
+ try:
45
+ os.makedirs(os.path.dirname(file_path), exist_ok=True)
46
+ with open(file_path, 'a', encoding='utf-8') as f:
47
+ f.write(json.dumps(data, ensure_ascii=False, default=str) + '\n')
48
+ except Exception as e:
49
+ print(f"❌ Error writing JSONL file: {e}", file=sys.stderr)
50
+
51
+ def main():
52
+ p = argparse.ArgumentParser(
53
+ description="Evaluate colorization/enhancement effect using CIEDE2000 and NIQE metrics, with JSONL output option")
54
+ p.add_argument("--groundtruth", type=str, required=True, help="Reference image URL or local path")
55
+ p.add_argument("--output", type=str, required=True, help="Reconstructed image URL or local path")
56
+ p.add_argument("--ciede-thresh", type=float, required=True,
57
+ help="CIEDE2000 minimum acceptance threshold (higher is better)")
58
+ p.add_argument("--niqe-thresh", type=float, required=True,
59
+ help="NIQE maximum acceptance threshold (lower is better)")
60
+ p.add_argument("--result", help="File path to store JSONL results")
61
+ args = p.parse_args()
62
+
63
+ process_ok = True
64
+ result_ok = False
65
+ comments = []
66
+
67
+ time_point = datetime.now().isoformat()
68
+
69
+ try:
70
+ img_ref = download_image(args.groundtruth)
71
+ img_recon = download_image(args.output)
72
+ except ValueError as err:
73
+ comments.append(str(err))
74
+ process_ok = False
75
+
76
+ if process_ok:
77
+ try:
78
+ score_ciede = compute_ciede2000(img_ref, img_recon)
79
+ score_niqe = compute_niqe(img_recon)
80
+
81
+ comments.append(f"CIEDE2000 average color difference: {score_ciede:.4f} (threshold {args.ciede_thresh})")
82
+ comments.append(f"Reconstructed image NIQE score: {score_niqe:.4f} (threshold {args.niqe_thresh})")
83
+
84
+ ok_ciede = score_ciede >= args.ciede_thresh
85
+ ok_niqe = score_niqe <= args.niqe_thresh
86
+
87
+ if ok_ciede and ok_niqe:
88
+ comments.append("✅ Processing effect meets requirements: CIEDE2000↑ and NIQE↓ both satisfy thresholds")
89
+ result_ok = True
90
+ else:
91
+ fail_reasons = []
92
+ if not ok_ciede:
93
+ fail_reasons.append("CIEDE2000 not met")
94
+ if not ok_niqe:
95
+ fail_reasons.append("NIQE not met")
96
+ comments.append("❌ Processing effect does not meet requirements: " + " ".join(fail_reasons))
97
+ except Exception as e:
98
+ comments.append(f"Exception during metric calculation: {e}")
99
+
100
+ if args.result:
101
+ record = {
102
+ "Process": process_ok,
103
+ "Result": result_ok,
104
+ "TimePoint": time_point,
105
+ "comments": "\n".join(comments)
106
+ }
107
+ write_result_jsonl(args.result, record)
108
+
109
+ for line in comments:
110
+ print(line, file=(sys.stderr if not process_ok or not result_ok else sys.stdout))
111
+
112
+ if __name__ == "__main__":
113
+ main()
test_scripts/DeOldify_03/test_script.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import os
4
+ import sys
5
+ import cv2
6
+ import numpy as np
7
+ import json
8
+ from datetime import datetime
9
+
10
+ def compute_colorfulness(frame):
11
+ # Convert to float for computation
12
+ b, g, r = cv2.split(frame.astype('float'))
13
+ # Compute RG and YB components
14
+ rg = r - g
15
+ yb = 0.5 * (r + g) - b
16
+ # Compute statistics
17
+ std_rg, std_yb = np.std(rg), np.std(yb)
18
+ mean_rg, mean_yb = np.mean(rg), np.mean(yb)
19
+ # Colorfulness metric
20
+ return np.sqrt(std_rg**2 + std_yb**2) + 0.3 * np.sqrt(mean_rg**2 + mean_yb**2)
21
+
22
+ def sample_frames(video_path, max_frames=30):
23
+ cap = cv2.VideoCapture(video_path)
24
+ if not cap.isOpened():
25
+ return []
26
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
27
+ step = max(1, total_frames // max_frames)
28
+ frames = []
29
+ for idx in range(0, total_frames, step):
30
+ cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
31
+ ret, frame = cap.read()
32
+ if not ret:
33
+ break
34
+ # Resize frame to width=256, keep aspect ratio
35
+ h, w = frame.shape[:2]
36
+ new_w = 256
37
+ new_h = int(h * (256 / w))
38
+ frame = cv2.resize(frame, (new_w, new_h))
39
+ frames.append(frame)
40
+ cap.release()
41
+ return frames
42
+
43
+ def main():
44
+ parser = argparse.ArgumentParser(description="Evaluate video colorfulness (detect non-BW video).")
45
+ parser.add_argument("--output", type=str, required=True,
46
+ help="Path to the input video file.")
47
+ parser.add_argument("--threshold", type=float, default=10.0,
48
+ help="Colorfulness threshold for pass/fail (default: 10.0).")
49
+ parser.add_argument("--result", help="Path to append the jsonl result.")
50
+ args = parser.parse_args()
51
+
52
+ input_path = args.output
53
+ process_ok = False
54
+ results_ok = False
55
+ comments = []
56
+
57
+ # Check file existence and basic validity
58
+ if not os.path.exists(input_path):
59
+ comments.append(f"Input file not found: {input_path}")
60
+ elif os.path.getsize(input_path) == 0:
61
+ comments.append(f"Input file is empty: {input_path}")
62
+ else:
63
+ ext = os.path.splitext(input_path)[1].lower()
64
+ if ext not in ['.mp4', '.avi', '.mov', '.mkv']:
65
+ comments.append(f"Unsupported file format: {ext}")
66
+ else:
67
+ process_ok = True
68
+
69
+ if process_ok:
70
+ frames = sample_frames(input_path)
71
+ if not frames:
72
+ comments.append("Failed to read any frames from video.")
73
+ else:
74
+ scores = [compute_colorfulness(f) for f in frames]
75
+ avg_score = float(np.mean(scores))
76
+ comments.append(f"Average colorfulness: {avg_score:.2f}")
77
+ results_ok = avg_score > args.threshold
78
+ comments.append("Pass" if results_ok else "Fail")
79
+
80
+ # Print result
81
+ print("=== Evaluation ===")
82
+ print("Process OK: ", process_ok)
83
+ if process_ok:
84
+ print("Result OK: ", results_ok)
85
+ for c in comments:
86
+ print(c)
87
+
88
+ # Append to jsonl
89
+ if args.result:
90
+ record = {
91
+ "Process": process_ok,
92
+ "Result": results_ok,
93
+ "TimePoint": datetime.now().isoformat(),
94
+ "comments": "; ".join(comments)
95
+ }
96
+ os.makedirs(os.path.dirname(args.result), exist_ok=True)
97
+ with open(args.result, 'a', encoding='utf-8') as f:
98
+ json_line = json.dumps(record, default=str, ensure_ascii=False)
99
+ f.write(json_line + "\n")
100
+
101
+ if __name__ == "__main__":
102
+ main()
test_scripts/DeScratch_01/detection.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT License.
3
+
4
+ import argparse
5
+ import gc
6
+ import json
7
+ import os
8
+ import time
9
+ import warnings
10
+
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torchvision as tv
15
+ from PIL import Image, ImageFile
16
+
17
+ from detection_models import networks
18
+ from detection_util.util import *
19
+
20
+ warnings.filterwarnings("ignore", category=UserWarning)
21
+
22
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
23
+
24
+
25
+ def data_transforms(img, full_size, method=Image.BICUBIC):
26
+ if full_size == "full_size":
27
+ ow, oh = img.size
28
+ h = int(round(oh / 16) * 16)
29
+ w = int(round(ow / 16) * 16)
30
+ if (h == oh) and (w == ow):
31
+ return img
32
+ return img.resize((w, h), method)
33
+
34
+ elif full_size == "scale_256":
35
+ ow, oh = img.size
36
+ pw, ph = ow, oh
37
+ if ow < oh:
38
+ ow = 256
39
+ oh = ph / pw * 256
40
+ else:
41
+ oh = 256
42
+ ow = pw / ph * 256
43
+
44
+ h = int(round(oh / 16) * 16)
45
+ w = int(round(ow / 16) * 16)
46
+ if (h == ph) and (w == pw):
47
+ return img
48
+ return img.resize((w, h), method)
49
+
50
+
51
+ def scale_tensor(img_tensor, default_scale=256):
52
+ _, _, w, h = img_tensor.shape
53
+ if w < h:
54
+ ow = default_scale
55
+ oh = h / w * default_scale
56
+ else:
57
+ oh = default_scale
58
+ ow = w / h * default_scale
59
+
60
+ oh = int(round(oh / 16) * 16)
61
+ ow = int(round(ow / 16) * 16)
62
+
63
+ return F.interpolate(img_tensor, [ow, oh], mode="bilinear")
64
+
65
+
66
+ def blend_mask(img, mask):
67
+
68
+ np_img = np.array(img).astype("float")
69
+
70
+ return Image.fromarray((np_img * (1 - mask) + mask * 255.0).astype("uint8")).convert("RGB")
71
+
72
+
73
+ def main(config):
74
+ print("initializing the dataloader")
75
+
76
+ model = networks.UNet(
77
+ in_channels=1,
78
+ out_channels=1,
79
+ depth=4,
80
+ conv_num=2,
81
+ wf=6,
82
+ padding=True,
83
+ batch_norm=True,
84
+ up_mode="upsample",
85
+ with_tanh=False,
86
+ sync_bn=True,
87
+ antialiasing=True,
88
+ )
89
+
90
+ ## load model
91
+ checkpoint_path = os.path.join(os.path.dirname(__file__), "checkpoints/detection/FT_Epoch_latest.pt")
92
+ checkpoint = torch.load(checkpoint_path, map_location="cpu")
93
+ model.load_state_dict(checkpoint["model_state"])
94
+ print("model weights loaded")
95
+
96
+ if config.GPU >= 0:
97
+ model.to(config.GPU)
98
+ else:
99
+ model.cpu()
100
+ model.eval()
101
+
102
+ ## dataloader and transformation
103
+ print("directory of testing image: " + config.test_path)
104
+ imagelist = os.listdir(config.test_path)
105
+ imagelist.sort()
106
+ total_iter = 0
107
+
108
+ P_matrix = {}
109
+ save_url = os.path.join(config.output_dir)
110
+ mkdir_if_not(save_url)
111
+
112
+ input_dir = os.path.join(save_url, "input")
113
+ output_dir = os.path.join(save_url, "mask")
114
+ # blend_output_dir=os.path.join(save_url, 'blend_output')
115
+ mkdir_if_not(input_dir)
116
+ mkdir_if_not(output_dir)
117
+ # mkdir_if_not(blend_output_dir)
118
+
119
+ idx = 0
120
+
121
+ results = []
122
+ for image_name in imagelist:
123
+
124
+ idx += 1
125
+
126
+ print("processing", image_name)
127
+
128
+ scratch_file = os.path.join(config.test_path, image_name)
129
+ if not os.path.isfile(scratch_file):
130
+ print("Skipping non-file %s" % image_name)
131
+ continue
132
+ scratch_image = Image.open(scratch_file).convert("RGB")
133
+ w, h = scratch_image.size
134
+
135
+ transformed_image_PIL = data_transforms(scratch_image, config.input_size)
136
+ scratch_image = transformed_image_PIL.convert("L")
137
+ scratch_image = tv.transforms.ToTensor()(scratch_image)
138
+ scratch_image = tv.transforms.Normalize([0.5], [0.5])(scratch_image)
139
+ scratch_image = torch.unsqueeze(scratch_image, 0)
140
+ _, _, ow, oh = scratch_image.shape
141
+ scratch_image_scale = scale_tensor(scratch_image)
142
+
143
+ if config.GPU >= 0:
144
+ scratch_image_scale = scratch_image_scale.to(config.GPU)
145
+ else:
146
+ scratch_image_scale = scratch_image_scale.cpu()
147
+ with torch.no_grad():
148
+ P = torch.sigmoid(model(scratch_image_scale))
149
+
150
+ P = P.data.cpu()
151
+ P = F.interpolate(P, [ow, oh], mode="nearest")
152
+
153
+ tv.utils.save_image(
154
+ (P >= 0.4).float(),
155
+ os.path.join(
156
+ output_dir,
157
+ image_name[:-4] + ".png",
158
+ ),
159
+ nrow=1,
160
+ padding=0,
161
+ normalize=True,
162
+ )
163
+ transformed_image_PIL.save(os.path.join(input_dir, image_name[:-4] + ".png"))
164
+ gc.collect()
165
+ torch.cuda.empty_cache()
166
+
167
+
168
+ if __name__ == "__main__":
169
+ parser = argparse.ArgumentParser()
170
+ # parser.add_argument('--checkpoint_name', type=str, default="FT_Epoch_latest.pt", help='Checkpoint Name')
171
+
172
+ parser.add_argument("--GPU", type=int, default=0)
173
+ parser.add_argument("--test_path", type=str, default=".")
174
+ parser.add_argument("--output_dir", type=str, default=".")
175
+ parser.add_argument("--input_size", type=str, default="scale_256", help="resize_256|full_size|scale_256")
176
+ config = parser.parse_args()
177
+
178
+ main(config)
test_scripts/DeScratch_01/test_script.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import os
4
+ import json
5
+ import datetime
6
+ import numpy as np
7
+ from PIL import Image, UnidentifiedImageError
8
+ import cv2
9
+
10
+
11
+ def main():
12
+ parser = argparse.ArgumentParser(description='Automated scratch detection test script')
13
+ parser.add_argument(
14
+ '--output',
15
+ required=True,
16
+ help='Path to output image for detection'
17
+ )
18
+ parser.add_argument(
19
+ '--result',
20
+ required=True,
21
+ help='Path to result JSONL file (created if not exists, appended if exists)'
22
+ )
23
+ parser.add_argument(
24
+ '--threshold',
25
+ type=float,
26
+ default=0.05,
27
+ help='Scratch detection threshold, default 0.05'
28
+ )
29
+ parser.add_argument(
30
+ '--min-length',
31
+ type=int,
32
+ default=50,
33
+ help='Minimum scratch length, default 50 pixels'
34
+ )
35
+ args = parser.parse_args()
36
+ process = False
37
+ result = False
38
+ comments = []
39
+ # —— Step 1: Validate input file ——
40
+ if not os.path.isfile(args.output):
41
+ comments.append(f'File not found: {args.output}')
42
+ elif os.path.getsize(args.output) == 0:
43
+ comments.append(f'File is empty: {args.output}')
44
+ else:
45
+ try:
46
+ # Verify format
47
+ img = Image.open(args.output)
48
+ img.verify()
49
+ process = True
50
+ # Reopen to read pixels
51
+ img = Image.open(args.output)
52
+ # Convert to numpy array
53
+ img_array = np.array(img)
54
+
55
+ # —— Step 2: Scratch detection logic ——
56
+ # Convert to grayscale
57
+ if len(img_array.shape) == 3:
58
+ gray_img = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
59
+ else:
60
+ gray_img = img_array
61
+
62
+ # Apply Gaussian blur to remove noise
63
+ blurred = cv2.GaussianBlur(gray_img, (5, 5), 0)
64
+
65
+ # Use Canny edge detection
66
+ edges = cv2.Canny(blurred, 50, 150)
67
+
68
+ # Use Hough transform to detect lines
69
+ lines = cv2.HoughLinesP(edges, 1, np.pi / 180,
70
+ threshold=50,
71
+ minLineLength=args.min_length,
72
+ maxLineGap=10)
73
+
74
+ # Calculate scratch features
75
+ if lines is not None:
76
+ scratch_count = len(lines)
77
+ # Calculate cumulative length and average intensity
78
+ total_length = 0
79
+ line_intensities = []
80
+
81
+ for line in lines:
82
+ x1, y1, x2, y2 = line[0]
83
+ length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
84
+ total_length += length
85
+
86
+ # Calculate average intensity along the line
87
+ line_points = np.linspace((x1, y1), (x2, y2), int(length), dtype=np.int32)
88
+ points_intensity = []
89
+ for x, y in line_points:
90
+ if 0 <= x < gray_img.shape[1] and 0 <= y < gray_img.shape[0]:
91
+ points_intensity.append(gray_img[y, x])
92
+
93
+ if points_intensity:
94
+ line_intensities.append(np.mean(points_intensity))
95
+
96
+ # Calculate features
97
+ avg_intensity = np.mean(line_intensities) if line_intensities else 0
98
+ intensity_std = np.std(line_intensities) if line_intensities else 0
99
+ avg_length = total_length / scratch_count if scratch_count > 0 else 0
100
+
101
+ # Scratch score - combines line count, length and intensity variation
102
+ scratch_score = (scratch_count * avg_length * intensity_std) / (img_array.size * 255)
103
+
104
+ if scratch_score > args.threshold:
105
+ comments.append(
106
+ f'Potential scratches detected: {scratch_count} lines, avg length {avg_length:.2f}px, intensity variation {intensity_std:.2f}, score {scratch_score:.6f}, exceeds threshold {args.threshold}')
107
+ result = False
108
+ else:
109
+ comments.append(f'No significant scratches detected: score {scratch_score:.6f}, below threshold {args.threshold}')
110
+ result = True
111
+ else:
112
+ comments.append('No lines detected, no scratches found')
113
+ result = True
114
+
115
+ except UnidentifiedImageError as e:
116
+ comments.append(f'Invalid image format: {e}')
117
+ except Exception as e:
118
+ comments.append(f'Error reading image: {e}')
119
+ print("; ".join(comments))
120
+ # —— Step 3: Write to JSONL ——
121
+ entry = {
122
+ "Process": process,
123
+ "Result": result,
124
+ "TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'),
125
+ "comments": "; ".join(comments)
126
+ }
127
+ # Append mode, one entry per line
128
+ with open(args.result, 'a', encoding='utf-8') as f:
129
+ f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n")
130
+
131
+
132
+ if __name__ == "__main__":
133
+ main()
test_scripts/DeScratch_02/test_script.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from PIL import Image
4
+ from tqdm import tqdm
5
+ import argparse
6
+ import json
7
+ from datetime import datetime
8
+
9
+
10
+ def evaluate_mask(pred_mask, gt_mask):
11
+ # Convert masks to boolean values, calculate IoU and Dice coefficient
12
+ pred_mask = pred_mask.astype(bool)
13
+ gt_mask = gt_mask.astype(bool)
14
+
15
+ intersection = np.logical_and(pred_mask, gt_mask).sum()
16
+ union = np.logical_or(pred_mask, gt_mask).sum()
17
+ iou = intersection / union if union != 0 else 1.0
18
+
19
+ dice = (2 * intersection) / (pred_mask.sum() + gt_mask.sum()) if (pred_mask.sum() + gt_mask.sum()) != 0 else 1.0
20
+
21
+ return {"IoU": iou, "Dice": dice}
22
+
23
+
24
+ def main(pred_dir, gt_dir, iou_threshold=0.5, dice_threshold=0.6, result_file=None):
25
+ all_metrics = []
26
+
27
+ # Initialize Process with default status True (files exist and valid)
28
+ process_result = {"Process": True, "Result": False, "TimePoint": "", "comments": ""}
29
+ process_result["TimePoint"] = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
30
+
31
+ print(f"\nStarting evaluation task:")
32
+ print(f"Predicted masks path: {pred_dir}")
33
+ print(f"Ground truth masks path: {gt_dir}\n")
34
+
35
+ # Validate input paths
36
+ if not os.path.exists(pred_dir) or not os.path.exists(gt_dir):
37
+ process_result["Process"] = False
38
+ process_result["comments"] = "Path does not exist"
39
+ print("❌ Predicted or ground truth masks path does not exist")
40
+ save_result(result_file, process_result)
41
+ return
42
+
43
+ # Check each file in directory
44
+ for filename in tqdm(os.listdir(gt_dir)):
45
+ # Check if file extension is valid image format
46
+ if not filename.lower().endswith(('.png', '.jpg', '.jpeg')):
47
+ continue
48
+
49
+ gt_path = os.path.join(gt_dir, filename)
50
+
51
+ # Automatically find predicted filename matching output.*
52
+ pred_filename = next((f for f in os.listdir(pred_dir) if
53
+ f.startswith('output.') and f.lower().endswith(('.png', '.jpg', '.jpeg'))), None)
54
+
55
+ if not pred_filename:
56
+ print(f"⚠️ Missing predicted file: {filename}")
57
+ continue
58
+
59
+ pred_path = os.path.join(pred_dir, pred_filename)
60
+
61
+ # Read ground truth and predicted masks
62
+ gt_mask = np.array(Image.open(gt_path).convert("L")) > 128
63
+ pred_mask = np.array(Image.open(pred_path).convert("L")) > 128
64
+
65
+ # Evaluate and calculate IoU and Dice
66
+ metrics = evaluate_mask(pred_mask, gt_mask)
67
+
68
+ # Check if passes evaluation thresholds
69
+ passed = metrics["IoU"] >= iou_threshold and metrics["Dice"] >= dice_threshold
70
+ status = "✅ Passed" if passed else "❌ Failed"
71
+
72
+ print(f"{filename:20s} | IoU: {metrics['IoU']:.3f} | Dice: {metrics['Dice']:.3f} | {status}")
73
+ all_metrics.append(metrics)
74
+
75
+ # If no files were evaluated, notify user
76
+ if not all_metrics:
77
+ print("\n⚠️ No valid image pairs found for evaluation, please check folder paths.")
78
+ process_result["Process"] = False
79
+ process_result["comments"] = "No valid image pairs for evaluation"
80
+ save_result(result_file, process_result)
81
+ return
82
+
83
+ # Calculate average results across all files
84
+ avg_metrics = {k: np.mean([m[k] for m in all_metrics]) for k in all_metrics[0].keys()}
85
+ print("\n📊 Overall average results:")
86
+ print(f"Average IoU: {avg_metrics['IoU']:.3f}")
87
+ print(f"Average Dice: {avg_metrics['Dice']:.3f}")
88
+
89
+ # Determine final result
90
+ if avg_metrics["IoU"] >= iou_threshold and avg_metrics["Dice"] >= dice_threshold:
91
+ process_result["Result"] = True
92
+ process_result[
93
+ "comments"] = f"All images passed, average IoU: {avg_metrics['IoU']:.3f}, average Dice: {avg_metrics['Dice']:.3f}"
94
+ print(f"✅ Test passed!")
95
+ else:
96
+ process_result["Result"] = False
97
+ process_result[
98
+ "comments"] = f"Test failed, average IoU: {avg_metrics['IoU']:.3f}, average Dice: {avg_metrics['Dice']:.3f}"
99
+ print(f"❌ Test failed")
100
+
101
+ save_result(result_file, process_result)
102
+
103
+
104
+ def save_result(result_file, result):
105
+ # Save test results to jsonl file, append if file exists
106
+ if result_file:
107
+ try:
108
+ with open(result_file, "a", encoding="utf-8") as f:
109
+ f.write(json.dumps(result, default=str) + "\n")
110
+ except Exception as e:
111
+ print(f"⚠️ Error writing result file: {e}")
112
+
113
+
114
+ if __name__ == "__main__":
115
+ parser = argparse.ArgumentParser()
116
+ parser.add_argument('--output', type=str, required=True, help="Folder containing predicted mask images")
117
+ parser.add_argument('--groundtruth', type=str, required=True, help="Folder containing ground truth mask images")
118
+ parser.add_argument('--result', type=str, required=True, help="Path to jsonl file for storing test results")
119
+ args = parser.parse_args()
120
+
121
+ main(args.output, args.groundtruth, result_file=args.result)
test_scripts/DeScratch_03/test_script.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import cv2
4
+ import numpy as np
5
+ import json
6
+ from datetime import datetime
7
+ from skimage.metrics import peak_signal_noise_ratio as psnr
8
+ from skimage.metrics import structural_similarity as ssim
9
+ import glob
10
+
11
+ def find_single_image(directory, pattern):
12
+ """Find single image file in specified directory using glob pattern."""
13
+ files = glob.glob(os.path.join(directory, pattern))
14
+ if len(files) == 1:
15
+ return files[0]
16
+ elif len(files) == 0:
17
+ print(f"⚠️ No matching {pattern} image found in {directory}")
18
+ else:
19
+ print(f"⚠️ Multiple matching {pattern} images found in {directory}")
20
+ return None
21
+
22
+ def evaluate_quality(pred_dir, gt_dir, threshold_ssim=0.65, threshold_psnr=15, result_file=None):
23
+ result = {
24
+ "Process": True,
25
+ "Result": False,
26
+ "TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
27
+ "comments": ""
28
+ }
29
+
30
+ print(f"\nStarting evaluation task:")
31
+ print(f"Predicted images path: {pred_dir}")
32
+ print(f"Ground truth images path: {gt_dir}\n")
33
+
34
+ if not os.path.exists(pred_dir) or not os.path.exists(gt_dir):
35
+ result["Process"] = False
36
+ result["comments"] = "Path does not exist"
37
+ print("❌ Path does not exist")
38
+ save_result(result_file, result)
39
+ return
40
+
41
+ pred_path = find_single_image(pred_dir, "output.*")
42
+ gt_path = find_single_image(gt_dir, "gt.*")
43
+
44
+ if not pred_path or not gt_path:
45
+ result["Process"] = False
46
+ result["comments"] = "Predicted or GT image missing or multiple matches"
47
+ save_result(result_file, result)
48
+ return
49
+
50
+ pred_img = cv2.imread(pred_path)
51
+ gt_img = cv2.imread(gt_path)
52
+
53
+ if pred_img is None or gt_img is None:
54
+ result["Process"] = False
55
+ result["comments"] = "Failed to read images"
56
+ print("⚠️ Failed to read images")
57
+ save_result(result_file, result)
58
+ return
59
+
60
+ pred_img = cv2.resize(pred_img, (gt_img.shape[1], gt_img.shape[0]))
61
+ pred_gray = cv2.cvtColor(pred_img, cv2.COLOR_BGR2GRAY)
62
+ gt_gray = cv2.cvtColor(gt_img, cv2.COLOR_BGR2GRAY)
63
+
64
+ ssim_val = ssim(gt_gray, pred_gray)
65
+ psnr_val = psnr(gt_gray, pred_gray)
66
+
67
+ print(f"Structural Similarity (SSIM): {ssim_val:.4f}")
68
+ print(f"Peak Signal-to-Noise Ratio (PSNR): {psnr_val:.2f}")
69
+
70
+ if ssim_val >= threshold_ssim and psnr_val >= threshold_psnr:
71
+ result["Result"] = True
72
+ result["comments"] = f"Test passed, SSIM={ssim_val:.4f}, PSNR={psnr_val:.2f}"
73
+ print("✅ Restoration quality meets requirements")
74
+ else:
75
+ result["Result"] = False
76
+ result["comments"] = f"Test failed, SSIM={ssim_val:.4f}, PSNR={psnr_val:.2f}"
77
+ print("❌ Restoration quality does not meet requirements")
78
+
79
+ save_result(result_file, result)
80
+
81
+ def save_result(result_file, result):
82
+ if result_file:
83
+ try:
84
+ with open(result_file, "a", encoding="utf-8") as f:
85
+ f.write(json.dumps(result, ensure_ascii=False) + "\n")
86
+ print(f"[Success] Output file: {result_file}")
87
+ except Exception as e:
88
+ print(f"⚠️ Failed to write result file: {e}")
89
+
90
+ if __name__ == "__main__":
91
+ parser = argparse.ArgumentParser()
92
+ parser.add_argument('--output', type=str, required=True, help='Predicted results folder')
93
+ parser.add_argument('--groundtruth', type=str, required=True, help='Original GT folder')
94
+ parser.add_argument('--result', type=str, required=True, help='Output JSONL file for results')
95
+ args = parser.parse_args()
96
+
97
+ evaluate_quality(args.output, args.groundtruth, result_file=args.result)
test_scripts/Eparse_01/test_script.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import csv
3
+ import json
4
+ import os
5
+ import re
6
+ from datetime import datetime
7
+ from collections import defaultdict
8
+
9
+
10
+ def load_txt_file(file_path):
11
+ """Load TXT file content"""
12
+ try:
13
+ with open(file_path, "r", encoding="utf-8") as f:
14
+ content = f.read()
15
+ return content, None
16
+ except Exception as e:
17
+ return "", str(e)
18
+
19
+
20
+ def extract_file_blocks(content):
21
+ """Extract filename and corresponding table data blocks from TXT content"""
22
+ file_blocks = {}
23
+ current_file = None
24
+ current_block = []
25
+
26
+ # Attempt to split content using filename markers
27
+ lines = content.strip().split('\n')
28
+ i = 0
29
+ while i < len(lines):
30
+ line = lines[i].strip()
31
+
32
+ # Detect filename line - supports multiple possible formats
33
+ file_name_match = None
34
+ if line.startswith("文件名:") or line.startswith("File name:"):
35
+ file_name_match = re.search(r'(?:文件名|File name):?\s*(.+?)(?:\s|$)', line)
36
+ elif "文件名" in line:
37
+ file_name_match = re.search(r'.*文件名:?\s*(.+?)(?:\s|$)', line)
38
+ elif re.match(r'^[^:]*\.xlsx?\s*$', line): # Case of direct filename.xls(x)
39
+ file_name_match = re.match(r'^([^:]*\.xlsx?)$', line)
40
+
41
+ if file_name_match:
42
+ # If we have a current file, save its data block
43
+ if current_file and current_block:
44
+ file_blocks[current_file] = '\n'.join(current_block)
45
+
46
+ # Extract new filename
47
+ current_file = file_name_match.group(1).strip()
48
+ current_block = []
49
+ elif current_file is not None:
50
+ # Add to current block
51
+ current_block.append(line)
52
+
53
+ i += 1
54
+
55
+ # Process last file block
56
+ if current_file and current_block:
57
+ file_blocks[current_file] = '\n'.join(current_block)
58
+
59
+ return file_blocks
60
+
61
+
62
+ def parse_table_content(block_content):
63
+ """Parse table block content to extract data structure"""
64
+ sheets_data = []
65
+ current_sheet = []
66
+
67
+ lines = block_content.split('\n')
68
+ i = 0
69
+ in_sheet = False
70
+
71
+ while i < len(lines):
72
+ line = lines[i].strip()
73
+
74
+ # Skip empty lines
75
+ if not line:
76
+ i += 1
77
+ continue
78
+
79
+ # Detect Sheet marker
80
+ sheet_match = re.search(r'Sheet:?', line)
81
+ if sheet_match:
82
+ # If new Sheet found, save previous sheet data
83
+ if in_sheet and current_sheet:
84
+ sheets_data.append(current_sheet)
85
+ current_sheet = []
86
+
87
+ in_sheet = True
88
+ i += 1
89
+ continue
90
+
91
+ # Process data rows
92
+ if in_sheet or not sheets_data: # Also try parsing if no explicit Sheet markers
93
+ # Clean line numbers
94
+ cleaned_line = re.sub(r'^\d+\s+', '', line)
95
+
96
+ # Split cell data
97
+ # First try tab or multiple spaces
98
+ cells = re.split(r'\s{2,}|\t', cleaned_line)
99
+
100
+ # If only one element after split, try single space
101
+ if len(cells) <= 1:
102
+ cells = re.split(r'\s+', cleaned_line)
103
+
104
+ if cells:
105
+ current_sheet.append(cells)
106
+
107
+ i += 1
108
+
109
+ # Save last sheet
110
+ if current_sheet:
111
+ sheets_data.append(current_sheet)
112
+
113
+ # If no explicit sheet separation but has data, treat as single sheet
114
+ if not sheets_data and lines:
115
+ # Re-parse as single sheet
116
+ current_sheet = []
117
+ for line in lines:
118
+ if line.strip():
119
+ # Clean line numbers
120
+ cleaned_line = re.sub(r'^\d+\s+', '', line)
121
+ # Split cells
122
+ cells = re.split(r'\s{2,}|\t', cleaned_line)
123
+ if len(cells) <= 1:
124
+ cells = re.split(r'\s+', cleaned_line)
125
+ if cells:
126
+ current_sheet.append(cells)
127
+
128
+ if current_sheet:
129
+ sheets_data.append(current_sheet)
130
+
131
+ return sheets_data
132
+
133
+
134
+ def normalize_value(value):
135
+ """Normalize cell value, handling various format differences"""
136
+ # Convert to string and strip whitespace
137
+ value_str = str(value).strip()
138
+
139
+ # Standardize date formats
140
+ date_match = re.match(r'(\d{4}[-/]\d{1,2}[-/]\d{1,2})(?:\s+\d{1,2}:\d{1,2}(?::\d{1,2})?)?', value_str)
141
+ if date_match:
142
+ # Extract date part
143
+ date_part = date_match.group(1)
144
+ # Unify separator to -
145
+ date_part = date_part.replace('/', '-')
146
+ # Ensure yyyy-mm-dd format
147
+ date_parts = date_part.split('-')
148
+ if len(date_parts) == 3:
149
+ year = date_parts[0]
150
+ month = date_parts[1].zfill(2)
151
+ day = date_parts[2].zfill(2)
152
+ value_str = f"{year}-{month}-{day}"
153
+
154
+ # Standardize number formats
155
+ number_match = re.match(r'^[-+]?\d+(?:\.\d+)?$', value_str)
156
+ if number_match:
157
+ try:
158
+ # Try converting to float, then remove trailing zeros
159
+ num_value = float(value_str)
160
+ # If integer, remove decimal point
161
+ if num_value.is_integer():
162
+ value_str = str(int(num_value))
163
+ else:
164
+ value_str = str(num_value).rstrip('0').rstrip('.')
165
+ except:
166
+ pass
167
+
168
+ return value_str
169
+
170
+
171
+ def calculate_sheet_similarity(pred_sheet, truth_sheet):
172
+ """Calculate content similarity between two sheets"""
173
+ # Normalize all cell values
174
+ pred_values = set()
175
+ truth_values = set()
176
+
177
+ # Process prediction data
178
+ for row in pred_sheet:
179
+ for cell in row:
180
+ normalized = normalize_value(cell)
181
+ if normalized: # Ignore empty cells
182
+ pred_values.add(normalized)
183
+
184
+ # Process ground truth data
185
+ for row in truth_sheet:
186
+ for cell in row:
187
+ normalized = normalize_value(cell)
188
+ if normalized: # Ignore empty cells
189
+ truth_values.add(normalized)
190
+
191
+ # Calculate intersection and union
192
+ intersection = pred_values.intersection(truth_values)
193
+ union = pred_values.union(truth_values)
194
+
195
+ # Jaccard similarity
196
+ if not union:
197
+ return 0.0
198
+
199
+ similarity = len(intersection) / len(union) * 100
200
+ return similarity
201
+
202
+
203
+ def evaluate_file_similarity(pred_sheets, truth_sheets):
204
+ """Evaluate file similarity"""
205
+ if not pred_sheets or not truth_sheets:
206
+ return 0.0
207
+
208
+ # Calculate similarity for each sheet
209
+ total_similarity = 0.0
210
+ sheet_count = min(len(pred_sheets), len(truth_sheets))
211
+
212
+ for i in range(sheet_count):
213
+ sheet_similarity = calculate_sheet_similarity(
214
+ pred_sheets[i],
215
+ truth_sheets[i]
216
+ )
217
+ total_similarity += sheet_similarity
218
+
219
+ # Average similarity
220
+ avg_similarity = total_similarity / sheet_count if sheet_count > 0 else 0.0
221
+
222
+ # Reduce similarity if sheet counts differ
223
+ sheet_diff_penalty = abs(len(pred_sheets) - len(truth_sheets)) * 5 # 5% reduction per extra/missing sheet
224
+ final_similarity = max(0, avg_similarity - sheet_diff_penalty)
225
+
226
+ return final_similarity
227
+
228
+
229
+ def evaluate(pred_file, truth_file):
230
+ """Evaluation function"""
231
+ pred_content, pred_err = load_txt_file(pred_file)
232
+ truth_content, truth_err = load_txt_file(truth_file)
233
+
234
+ process_ok = True
235
+ comments = []
236
+
237
+ # Read error checking
238
+ if pred_err:
239
+ comments.append(f"[Prediction file read error] {pred_err}")
240
+ process_ok = False
241
+ if truth_err:
242
+ comments.append(f"[GT file read error] {truth_err}")
243
+ process_ok = False
244
+ if not process_ok:
245
+ return {
246
+ "Process": False,
247
+ "Result": False,
248
+ "TimePoint": datetime.now().isoformat(),
249
+ "comments": "\n".join(comments)
250
+ }
251
+
252
+ # Extract file blocks
253
+ pred_file_blocks = extract_file_blocks(pred_content)
254
+ truth_file_blocks = extract_file_blocks(truth_content)
255
+
256
+ # Filename comparison
257
+ pred_files = set(pred_file_blocks.keys())
258
+ truth_files = set(truth_file_blocks.keys())
259
+
260
+ comments.append(f"Prediction file contains {len(pred_files)} Excel data blocks")
261
+ comments.append(f"GT file contains {len(truth_files)} Excel data blocks")
262
+
263
+ if len(pred_files) == 0:
264
+ comments.append("⚠️ No Excel data blocks found in prediction file!")
265
+ return {
266
+ "Process": True,
267
+ "Result": False,
268
+ "TimePoint": datetime.now().isoformat(),
269
+ "comments": "\n".join(comments)
270
+ }
271
+
272
+ if len(truth_files) == 0:
273
+ comments.append("⚠️ No Excel data blocks found in GT file!")
274
+ return {
275
+ "Process": True,
276
+ "Result": False,
277
+ "TimePoint": datetime.now().isoformat(),
278
+ "comments": "\n".join(comments)
279
+ }
280
+
281
+ # Calculate file matching
282
+ common_files = pred_files.intersection(truth_files)
283
+ missing_files = truth_files - pred_files
284
+ extra_files = pred_files - truth_files
285
+
286
+ # Filename match rate
287
+ file_match_rate = len(common_files) / len(truth_files) * 100 if truth_files else 0
288
+ comments.append(f"Filename match rate: {file_match_rate:.2f}%")
289
+
290
+ if missing_files:
291
+ comments.append(f"Missing files: {', '.join(missing_files)}")
292
+ if extra_files:
293
+ comments.append(f"Extra files: {', '.join(extra_files)}")
294
+
295
+ # Content similarity scoring
296
+ total_similarity = 0.0
297
+ file_count = 0
298
+
299
+ # Process exactly matched filenames
300
+ for file_name in common_files:
301
+ pred_content_block = pred_file_blocks[file_name]
302
+ truth_content_block = truth_file_blocks[file_name]
303
+
304
+ # Parse table content
305
+ pred_sheets = parse_table_content(pred_content_block)
306
+ truth_sheets = parse_table_content(truth_content_block)
307
+
308
+ # Calculate file similarity
309
+ file_similarity = evaluate_file_similarity(pred_sheets, truth_sheets)
310
+
311
+ comments.append(f"File '{file_name}' content similarity: {file_similarity:.2f}%")
312
+ total_similarity += file_similarity
313
+ file_count += 1
314
+
315
+ # Attempt to match files with slightly different names by content
316
+ if missing_files and extra_files:
317
+ for missing_file in list(missing_files):
318
+ best_match = None
319
+ best_similarity = 0
320
+
321
+ truth_content_block = truth_file_blocks[missing_file]
322
+ truth_sheets = parse_table_content(truth_content_block)
323
+
324
+ for extra_file in list(extra_files):
325
+ pred_content_block = pred_file_blocks[extra_file]
326
+ pred_sheets = parse_table_content(pred_content_block)
327
+
328
+ similarity = evaluate_file_similarity(pred_sheets, truth_sheets)
329
+ if similarity > best_similarity and similarity > 60: # Require at least 60% similarity
330
+ best_similarity = similarity
331
+ best_match = extra_file
332
+
333
+ if best_match:
334
+ comments.append(
335
+ f"Different filenames but similar content: '{missing_file}' and '{best_match}', similarity: {best_similarity:.2f}%")
336
+ total_similarity += best_similarity
337
+ file_count += 1
338
+ missing_files.remove(missing_file)
339
+ extra_files.remove(best_match)
340
+
341
+ # Calculate average file similarity
342
+ avg_similarity = total_similarity / len(truth_files) if truth_files else 0
343
+
344
+ # Penalize for missing files
345
+ if missing_files:
346
+ missing_penalty = len(missing_files) / len(truth_files) * 100
347
+ comments.append(f"Score reduction for missing files: -{missing_penalty:.2f}%")
348
+ avg_similarity = max(0, avg_similarity - missing_penalty)
349
+
350
+ comments.append(f"Average content similarity across all files: {avg_similarity:.2f}%")
351
+
352
+ # File match and content similarity weights
353
+ file_match_weight = 0.3
354
+ content_similarity_weight = 0.7
355
+
356
+ # Final score
357
+ final_score = (file_match_rate * file_match_weight + avg_similarity * content_similarity_weight)
358
+ passed = final_score >= 75
359
+
360
+ comments.append(
361
+ f"Final score (filename match {file_match_weight * 100}% + content similarity {content_similarity_weight * 100}%): {final_score:.2f}% (threshold=75%)")
362
+
363
+ if passed:
364
+ comments.append("✅ Test passed!")
365
+ else:
366
+ comments.append("❌ Test failed!")
367
+
368
+ # If structured parsing fails, try basic content comparison
369
+ if file_count == 0:
370
+ comments.append("Note: No matches found in structured parsing, attempting basic content comparison")
371
+
372
+ # Calculate word overlap in full content
373
+ pred_words = set(re.findall(r'\b\w+\b', pred_content.lower()))
374
+ truth_words = set(re.findall(r'\b\w+\b', truth_content.lower()))
375
+
376
+ common_words = pred_words.intersection(truth_words)
377
+ all_words = pred_words.union(truth_words)
378
+
379
+ if all_words:
380
+ word_overlap = len(common_words) / len(all_words) * 100
381
+ comments.append(f"Content word overlap: {word_overlap:.2f}%")
382
+
383
+ # Pass if high word overlap
384
+ if word_overlap >= 75:
385
+ comments.append("Based on word overlap: ✅ Test passed!")
386
+ return {
387
+ "Process": True,
388
+ "Result": True,
389
+ "TimePoint": datetime.now().isoformat(),
390
+ "comments": "\n".join(comments)
391
+ }
392
+
393
+ return {
394
+ "Process": True,
395
+ "Result": passed,
396
+ "TimePoint": datetime.now().isoformat(),
397
+ "comments": "\n".join(comments)
398
+ }
399
+
400
+
401
+ def append_result_to_jsonl(result_path, result_dict):
402
+ os.makedirs(os.path.dirname(result_path) or '.', exist_ok=True)
403
+ with open(result_path, "a", encoding="utf-8") as f:
404
+ json.dump(result_dict, f, ensure_ascii=False, default=str)
405
+ f.write("\n")
406
+
407
+
408
+ if __name__ == "__main__":
409
+ parser = argparse.ArgumentParser()
410
+ parser.add_argument("--output", type=str, required=True, help="Path to extracted tables")
411
+ parser.add_argument("--groundtruth", type=str, required=True, help="Path to standard tables")
412
+ parser.add_argument("--result", type=str, required=True, help="Output JSONL file path for results")
413
+ args = parser.parse_args()
414
+
415
+ result_dict = evaluate(args.output, args.groundtruth)
416
+ append_result_to_jsonl(args.result, result_dict)
417
+ print("[Evaluation complete] Result summary:")
418
+ print(json.dumps(result_dict, ensure_ascii=False, indent=2, default=str))
test_scripts/Eparse_02/test_script.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ import re
5
+ from datetime import datetime
6
+ from ast import literal_eval
7
+ import traceback
8
+
9
+
10
+ def normalize_json_item(item):
11
+ """
12
+ Normalize JSON objects to remove format differences
13
+ """
14
+ if isinstance(item, str):
15
+ # Try parsing string as dictionary
16
+ try:
17
+ item = json.loads(item)
18
+ except:
19
+ try:
20
+ # Try parsing non-standard JSON with ast.literal_eval
21
+ item = literal_eval(item)
22
+ except:
23
+ # Return original string if parsing fails
24
+ return item
25
+
26
+ # Ensure all keys are strings
27
+ result = {}
28
+ for k, v in item.items():
29
+ # Convert key to string and strip whitespace
30
+ key = str(k).strip().lower()
31
+ # Process value
32
+ if isinstance(v, str):
33
+ # Strip whitespace and lowercase string values (except for type field)
34
+ if key == 'type':
35
+ value = v.strip() # Preserve case for type field
36
+ else:
37
+ value = v.strip().lower()
38
+ else:
39
+ value = v
40
+ result[key] = value
41
+
42
+ return result
43
+
44
+
45
+ def parse_gt_format(content):
46
+ """
47
+ Special parser for gt.txt format
48
+ Features multi-line dictionaries separated by commas
49
+ """
50
+ items = []
51
+ # Replace all newlines to make content single line
52
+ content = content.replace('\n', ' ')
53
+
54
+ # Try parsing as list
55
+ try:
56
+ # If content is wrapped in brackets, remove them
57
+ if content.strip().startswith('[') and content.strip().endswith(']'):
58
+ content = content.strip()[1:-1]
59
+
60
+ # Split multiple dictionaries (each starts with { and ends with }, or })
61
+ dict_pattern = r'\{[^{}]*\}'
62
+ dict_matches = re.findall(dict_pattern, content)
63
+
64
+ for dict_str in dict_matches:
65
+ try:
66
+ item = literal_eval(dict_str)
67
+ items.append(normalize_json_item(item))
68
+ except Exception as e:
69
+ print(f"Failed to parse dictionary: {dict_str[:50]}... Error: {e}")
70
+ except Exception as e:
71
+ print(f"Failed to parse gt format: {e}")
72
+
73
+ print(f"Parsed {len(items)} items from gt format")
74
+ return items
75
+
76
+
77
+ def parse_json_line_format(content):
78
+ """
79
+ Parse format with one JSON object per line
80
+ """
81
+ items = []
82
+ lines = content.split('\n')
83
+
84
+ for line in lines:
85
+ line = line.strip()
86
+ if not line:
87
+ continue
88
+
89
+ try:
90
+ # Try parsing as JSON object
91
+ item = json.loads(line)
92
+ items.append(normalize_json_item(item))
93
+ except:
94
+ try:
95
+ # Try parsing non-standard JSON with ast.literal_eval
96
+ item = literal_eval(line)
97
+ items.append(normalize_json_item(item))
98
+ except Exception as e:
99
+ print(f"Unable to parse line: {line[:50]}... Error: {e}")
100
+
101
+ print(f"Parsed {len(items)} items from JSON line format")
102
+ return items
103
+
104
+
105
+ def load_json_items(file_path):
106
+ """
107
+ Read file containing JSON objects, return normalized list
108
+ Supports multiple formats: JSON per line, single JSON array, list of dicts, multi-line dict format
109
+ """
110
+ print(f"Parsing file: {file_path}")
111
+ items = []
112
+
113
+ try:
114
+ with open(file_path, "r", encoding="utf-8") as f:
115
+ content = f.read().strip()
116
+
117
+ # Check if file is empty
118
+ if not content:
119
+ print("File is empty")
120
+ return items
121
+
122
+ # 1. First try gt.txt specific format
123
+ if "{'c_header':" in content or '{"c_header":' in content or "'c_header':" in content:
124
+ print("Detected gt.txt format, using specialized parser")
125
+ items = parse_gt_format(content)
126
+ if items:
127
+ return items
128
+
129
+ # 2. Try parsing as JSON array
130
+ if content.startswith('[') and content.endswith(']'):
131
+ try:
132
+ array_items = json.loads(content)
133
+ for item in array_items:
134
+ items.append(normalize_json_item(item))
135
+ print(f"Parsed {len(items)} items from JSON array")
136
+ return items
137
+ except Exception as e:
138
+ print(f"JSON array parsing failed: {e}")
139
+
140
+ # Try Python list literal
141
+ try:
142
+ array_items = literal_eval(content)
143
+ for item in array_items:
144
+ items.append(normalize_json_item(item))
145
+ print(f"Parsed {len(items)} items from Python list")
146
+ return items
147
+ except Exception as e:
148
+ print(f"Python list parsing failed: {e}")
149
+
150
+ # 3. Try parsing JSON objects line by line
151
+ items = parse_json_line_format(content)
152
+ if items:
153
+ return items
154
+
155
+ # 4. Finally try extracting all possible dictionaries
156
+ print("Attempting to extract all possible dictionaries...")
157
+ dict_pattern = r'\{[^{}]*\}'
158
+ dicts = re.findall(dict_pattern, content)
159
+ for d in dicts:
160
+ try:
161
+ item = literal_eval(d)
162
+ items.append(normalize_json_item(item))
163
+ except Exception as e:
164
+ print(f"Dictionary extraction failed: {d[:30]}... Error: {e}")
165
+
166
+ if items:
167
+ print(f"Parsed {len(items)} items from dictionary extraction")
168
+ return items
169
+
170
+ except Exception as e:
171
+ print(f"Error reading file: {e}")
172
+ traceback.print_exc()
173
+
174
+ return items
175
+
176
+
177
+ def compare_items(pred_items, gt_items):
178
+ """
179
+ Compare predicted items with ground truth items, calculate match rate for key fields
180
+ """
181
+ if not pred_items or not gt_items:
182
+ return 0, "No valid items to compare"
183
+
184
+ print(f"Comparing {len(pred_items)} predicted items with {len(gt_items)} ground truth items")
185
+
186
+ # List of key fields we consider more important
187
+ key_fields = ['value', 'row', 'column', 'excel_rc', 'c_header', 'r_header', 'sheet', 'f_name']
188
+
189
+ total_matches = 0
190
+ total_fields = 0
191
+ missing_items = 0
192
+
193
+ # Number of items to match (based on smaller set)
194
+ expected_matches = min(len(pred_items), len(gt_items))
195
+
196
+ # If predicted items are fewer than ground truth, record missing count
197
+ if len(pred_items) < len(gt_items):
198
+ missing_items = len(gt_items) - len(pred_items)
199
+
200
+ # Print sample data for debugging
201
+ print("Predicted items sample:")
202
+ for i, item in enumerate(pred_items[:2]):
203
+ print(f" Item {i}: {item}")
204
+
205
+ print("Ground truth items sample:")
206
+ for i, item in enumerate(gt_items[:2]):
207
+ print(f" Item {i}: {item}")
208
+
209
+ # Compare item by item
210
+ for i in range(min(len(pred_items), len(gt_items))):
211
+ pred_item = pred_items[i]
212
+ gt_item = gt_items[i]
213
+
214
+ item_matches = 0
215
+ item_fields = 0
216
+
217
+ # Compare key fields
218
+ for field in key_fields:
219
+ # For predicted item, try to match different case variations
220
+ pred_fields = [f.lower() for f in pred_item.keys()]
221
+ pred_field_key = None
222
+
223
+ # Find matching field (case insensitive)
224
+ if field in pred_item:
225
+ pred_field_key = field
226
+ else:
227
+ for k in pred_item.keys():
228
+ if k.lower() == field.lower():
229
+ pred_field_key = k
230
+ break
231
+
232
+ # For ground truth item, also try to match different case variations
233
+ gt_field_key = None
234
+ if field in gt_item:
235
+ gt_field_key = field
236
+ else:
237
+ for k in gt_item.keys():
238
+ if k.lower() == field.lower():
239
+ gt_field_key = k
240
+ break
241
+
242
+ # If both have the field, compare
243
+ if pred_field_key is not None and gt_field_key is not None:
244
+ item_fields += 1
245
+ pred_value = pred_item[pred_field_key]
246
+ gt_value = gt_item[gt_field_key]
247
+
248
+ # Case insensitive comparison for excel_rc field
249
+ if field.lower() == 'excel_rc':
250
+ if str(pred_value).upper() == str(gt_value).upper():
251
+ item_matches += 1
252
+ # Numeric comparison for numeric fields
253
+ elif field.lower() in ['row', 'column'] and isinstance(pred_value, (int, float)) and isinstance(
254
+ gt_value, (int, float)):
255
+ if pred_value == gt_value:
256
+ item_matches += 1
257
+ # Special handling for type field
258
+ elif field.lower() == 'type':
259
+ # Extract type name, ignoring quotes and class parts
260
+ pred_type = re.sub(r"[<>'\"]|class\s+", "", str(pred_value)).strip()
261
+ gt_type = re.sub(r"[<>'\"]|class\s+", "", str(gt_value)).strip()
262
+ if pred_type == gt_type:
263
+ item_matches += 1
264
+ # Standardized comparison for other fields
265
+ elif str(pred_value).lower() == str(gt_value).lower():
266
+ item_matches += 1
267
+
268
+ # Add to total matches
269
+ if item_fields > 0:
270
+ total_matches += item_matches
271
+ total_fields += item_fields
272
+
273
+ # Calculate match rate
274
+ if total_fields == 0:
275
+ accuracy = 0
276
+ details = "No valid fields found for comparison"
277
+ else:
278
+ accuracy = total_matches / total_fields
279
+ details = f"Matched fields: {total_matches}/{total_fields}"
280
+
281
+ # Apply penalty if missing items
282
+ if missing_items > 0:
283
+ penalty = min(0.2, missing_items / len(gt_items) * 0.5) # Max 20% penalty
284
+ accuracy = max(0, accuracy - penalty)
285
+ details += f", Missing items: {missing_items}, applied {penalty:.2f} penalty"
286
+
287
+ return accuracy, details
288
+
289
+
290
+ def evaluate(pred_path, gt_path):
291
+ """Evaluate based on parsed content"""
292
+ threshold = 0.70 # Fixed threshold
293
+
294
+ # Load and normalize data
295
+ pred_items = load_json_items(pred_path)
296
+ gt_items = load_json_items(gt_path)
297
+
298
+ # Initialize result dictionary
299
+ result = {
300
+ "Process": True,
301
+ "Result": False,
302
+ "TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
303
+ "comments": ""
304
+ }
305
+
306
+ # Check if input files are valid
307
+ if not pred_items:
308
+ result["Process"] = False
309
+ result["comments"] = "Predicted file parsed as empty, cannot evaluate!"
310
+ return result
311
+
312
+ if not gt_items:
313
+ result["Process"] = False
314
+ result["comments"] = "❌ Ground truth parsed as empty!"
315
+ result["Result"] = False
316
+ return result
317
+
318
+ # Compare items and calculate match rate
319
+ accuracy, details = compare_items(pred_items, gt_items)
320
+
321
+ # Determine result based on accuracy
322
+ if accuracy >= threshold:
323
+ result["Result"] = True
324
+ result["comments"] = f"✅ Test passed! Content match rate={accuracy:.4f} ≥ {threshold}. {details}"
325
+ else:
326
+ result["Result"] = False
327
+ result["comments"] = f"❌ Test failed. Content match rate={accuracy:.4f} < {threshold}. {details}"
328
+
329
+ print(result["comments"])
330
+ return result
331
+
332
+
333
+ def save_result(result, result_file):
334
+ """Save results to jsonl file"""
335
+ # Ensure directory exists
336
+ os.makedirs(os.path.dirname(result_file) or '.', exist_ok=True)
337
+
338
+ # Write in append mode, ensuring each record is on separate line
339
+ with open(result_file, "a", encoding="utf-8") as f:
340
+ f.write(json.dumps(result, ensure_ascii=False) + "\n")
341
+
342
+
343
+ def main():
344
+ parser = argparse.ArgumentParser(
345
+ description="Evaluate Excel cell parsing output by content similarity and save results")
346
+ parser.add_argument("--output", required=True, help="Predicted output file path")
347
+ parser.add_argument("--groundtruth", required=True, help="Ground truth file path")
348
+ parser.add_argument("--result", required=True, help="Result output file path (JSONL format)")
349
+ args = parser.parse_args()
350
+
351
+ # Get evaluation result
352
+ result = evaluate(args.output, args.groundtruth)
353
+
354
+ # Save result to specified jsonl file
355
+ save_result(result, args.result)
356
+ print(f"Results saved to {args.result}")
357
+
358
+
359
+ if __name__ == "__main__":
360
+ main()
test_scripts/Eparse_03/test_script.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ import datetime
5
+ import re
6
+ from collections import defaultdict
7
+
8
+
9
+ def normalize_value(value):
10
+ """Standardize values to handle consistency between numbers and strings"""
11
+ if value is None:
12
+ return "null"
13
+ if isinstance(value, (int, float)):
14
+ return str(value)
15
+ return str(value).strip()
16
+
17
+
18
+ def extract_cell_data(json_data):
19
+ """Extract cell data from different JSON structures, returning standardized cell collections"""
20
+ cells = []
21
+
22
+ # Handle GT format
23
+ if isinstance(json_data, dict) and "sheets" in json_data:
24
+ for sheet_name, sheet_data in json_data["sheets"].items():
25
+ for row in sheet_data.get("rows", []):
26
+ row_index = row.get("row_index", 0)
27
+ for cell in row.get("cells", []):
28
+ cells.append({
29
+ "row": row_index,
30
+ "column": cell.get("column_index"),
31
+ "value": normalize_value(cell.get("value")),
32
+ "excel_RC": cell.get("excel_RC"),
33
+ "c_header": cell.get("c_header"),
34
+ "r_header": cell.get("r_header"),
35
+ "type": cell.get("type")
36
+ })
37
+
38
+ # Handle Agent output format
39
+ elif isinstance(json_data, list):
40
+ for table in json_data:
41
+ for cell in table.get("data", []):
42
+ cells.append({
43
+ "row": cell.get("row"),
44
+ "column": cell.get("column"),
45
+ "value": normalize_value(cell.get("value")),
46
+ "excel_RC": cell.get("excel_RC"),
47
+ "c_header": cell.get("c_header"),
48
+ "r_header": cell.get("r_header"),
49
+ "type": cell.get("type")
50
+ })
51
+
52
+ # Handle other possible formats
53
+ else:
54
+ try:
55
+ # Attempt recursive search for all cell-like data structures
56
+ def find_cells(obj, path=""):
57
+ if isinstance(obj, dict):
58
+ # Check if it's a cell structure
59
+ if all(k in obj for k in ["row", "column", "value"]) or \
60
+ all(k in obj for k in ["row_index", "column_index", "value"]):
61
+ row = obj.get("row", obj.get("row_index", 0))
62
+ column = obj.get("column", obj.get("column_index", 0))
63
+ cells.append({
64
+ "row": row,
65
+ "column": column,
66
+ "value": normalize_value(obj.get("value")),
67
+ "excel_RC": obj.get("excel_RC", f"{chr(65 + column)}{row + 1}"),
68
+ "c_header": obj.get("c_header", str(column + 1)),
69
+ "r_header": obj.get("r_header", str(row + 1)),
70
+ "type": obj.get("type", "")
71
+ })
72
+ else:
73
+ for k, v in obj.items():
74
+ find_cells(v, f"{path}.{k}" if path else k)
75
+ elif isinstance(obj, list):
76
+ for i, item in enumerate(obj):
77
+ find_cells(item, f"{path}[{i}]")
78
+
79
+ find_cells(json_data)
80
+ except Exception as e:
81
+ print(f"Failed to parse JSON structure: {str(e)}")
82
+
83
+ return cells
84
+
85
+
86
+ def compute_cell_similarity(cells1, cells2):
87
+ """Calculate similarity between two cell collections"""
88
+ if not cells1 and not cells2:
89
+ return 1.0 # Both empty, consider perfect match
90
+
91
+ if not cells1 or not cells2:
92
+ return 0.0 # One empty, the other not
93
+
94
+ # Create position-to-cell mappings
95
+ cells1_dict = {(cell["row"], cell["column"]): cell for cell in cells1}
96
+ cells2_dict = {(cell["row"], cell["column"]): cell for cell in cells2}
97
+
98
+ # Get all unique cell positions
99
+ all_positions = set(cells1_dict.keys()) | set(cells2_dict.keys())
100
+
101
+ # Calculate matched cell count
102
+ matches = 0
103
+ total_weight = 0
104
+
105
+ for pos in all_positions:
106
+ weight = 1 # Cell weight
107
+ total_weight += weight
108
+
109
+ if pos in cells1_dict and pos in cells2_dict:
110
+ cell1 = cells1_dict[pos]
111
+ cell2 = cells2_dict[pos]
112
+
113
+ # Compare values
114
+ if normalize_value(cell1["value"]) == normalize_value(cell2["value"]):
115
+ matches += 0.6 * weight # Value match contributes 60% weight
116
+
117
+ # Compare other metadata (10% weight each)
118
+ for key in ["excel_RC", "c_header", "r_header", "type"]:
119
+ if key in cell1 and key in cell2 and normalize_value(cell1[key]) == normalize_value(cell2[key]):
120
+ matches += 0.1 * weight
121
+
122
+ similarity = matches / total_weight if total_weight > 0 else 0
123
+ return similarity
124
+
125
+
126
+ def is_valid_file(file_path):
127
+ """Check if file exists and is not empty"""
128
+ return os.path.isfile(file_path) and os.path.getsize(file_path) > 0
129
+
130
+
131
+ def evaluate(pred_file, gt_file):
132
+ """Read files and calculate similarity"""
133
+ try:
134
+ with open(pred_file, 'r', encoding='utf-8') as f_pred:
135
+ pred_text = f_pred.read()
136
+ with open(gt_file, 'r', encoding='utf-8') as f_gt:
137
+ gt_text = f_gt.read()
138
+ except Exception as e:
139
+ return None, f"❌ File read error: {str(e)}"
140
+
141
+ try:
142
+ # Parse JSON
143
+ pred_json = json.loads(pred_text)
144
+ gt_json = json.loads(gt_text)
145
+
146
+ # Extract cell data
147
+ pred_cells = extract_cell_data(pred_json)
148
+ gt_cells = extract_cell_data(gt_json)
149
+
150
+ # Calculate cell content similarity
151
+ similarity = compute_cell_similarity(pred_cells, gt_cells)
152
+
153
+ return similarity, f"✅ Similarity calculation complete: {similarity:.4f} ({len(gt_cells)} GT cells, {len(pred_cells)} predicted cells)"
154
+ except json.JSONDecodeError:
155
+ # Fallback to Levenshtein similarity if JSON parsing fails
156
+ try:
157
+ import Levenshtein
158
+ levenshtein_distance = Levenshtein.distance(pred_text, gt_text)
159
+ similarity = 1 - levenshtein_distance / max(len(pred_text), len(gt_text))
160
+ return similarity, f"⚠️ JSON parsing failed, using Levenshtein similarity: {similarity:.4f}"
161
+ except ImportError:
162
+ return 0.0, "❌ JSON parsing failed and Levenshtein library unavailable"
163
+ except Exception as e:
164
+ return 0.0, f"❌ Evaluation process error: {str(e)}"
165
+
166
+
167
+ def save_result(result_path, data):
168
+ """Save results to jsonl file"""
169
+ os.makedirs(os.path.dirname(result_path) or '.', exist_ok=True)
170
+ with open(result_path, "a", encoding="utf-8") as f:
171
+ f.write(json.dumps(data, ensure_ascii=False, default=str) + "\n")
172
+
173
+
174
+ def main():
175
+ parser = argparse.ArgumentParser(
176
+ description="Compare similarity between predicted and ground truth Excel JSON data.")
177
+ parser.add_argument('--output', required=True, help="Path to predicted JSON file.")
178
+ parser.add_argument('--groundtruth', required=True, help="Path to ground truth JSON file.")
179
+ parser.add_argument('--result', required=True, help="Path to save evaluation results (.jsonl).")
180
+ args = parser.parse_args()
181
+
182
+ result_dict = {
183
+ "Process": False,
184
+ "Result": False,
185
+ "TimePoint": datetime.datetime.now().isoformat(),
186
+ "comments": ""
187
+ }
188
+
189
+ # Step 1: Check if files exist and are not empty
190
+ if not is_valid_file(args.output):
191
+ result_dict["comments"] = "❌ Prediction file does not exist or is empty"
192
+ save_result(args.result, result_dict)
193
+ print(result_dict["comments"])
194
+ return
195
+
196
+ if not is_valid_file(args.groundtruth):
197
+ result_dict["comments"] = "❌ GT file does not exist or is empty"
198
+ save_result(args.result, result_dict)
199
+ print(result_dict["comments"])
200
+ return
201
+
202
+ result_dict["Process"] = True
203
+
204
+ # Step 2: Evaluate similarity
205
+ similarity, msg = evaluate(args.output, args.groundtruth)
206
+ if similarity is None:
207
+ result_dict["comments"] = msg
208
+ save_result(args.result, result_dict)
209
+ print(msg)
210
+ return
211
+
212
+ result_dict["comments"] = msg
213
+ result_dict["Result"] = similarity >= 0.8
214
+ save_result(args.result, result_dict)
215
+
216
+ print(msg)
217
+ if result_dict["Result"]:
218
+ print("✅ Passed: Similarity ≥ 0.8")
219
+ else:
220
+ print("❌ Failed: Similarity < 0.8")
221
+
222
+
223
+ if __name__ == "__main__":
224
+ main()
test_scripts/Faker_01/test_script.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import re
3
+ import argparse
4
+ import os
5
+ import json
6
+ from datetime import datetime
7
+
8
+ def validate_fake_users(file_path):
9
+ email_pattern = r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'
10
+ comments = []
11
+ process_ok = True
12
+ result_ok = False
13
+
14
+ if not os.path.isfile(file_path):
15
+ comments.append(f"[Error] File does not exist: {file_path}")
16
+ process_ok = False
17
+ elif os.path.getsize(file_path) == 0:
18
+ comments.append(f"[Error] File is empty: {file_path}")
19
+ process_ok = False
20
+
21
+ if process_ok:
22
+ try:
23
+ with open(file_path, 'r', encoding='utf-8') as file:
24
+ reader = csv.DictReader(file)
25
+ fieldnames = reader.fieldnames or []
26
+
27
+ if 'Username' not in fieldnames or 'Email' not in fieldnames:
28
+ comments.append(f"[Error] Required columns missing. Found: {fieldnames}")
29
+ process_ok = False
30
+ else:
31
+ row_count = 0
32
+ for idx, row in enumerate(reader):
33
+ email = row.get('Email', '')
34
+ username = row.get('Username', '')
35
+ row_count += 1
36
+ if not re.match(email_pattern, email):
37
+ comments.append(f"[Row {idx+2}] Invalid email: {email}")
38
+ process_ok = False
39
+ break
40
+ if not username.strip():
41
+ comments.append(f"[Row {idx+2}] Empty Username field")
42
+ process_ok = False
43
+ break
44
+
45
+ if process_ok:
46
+ if row_count != 100:
47
+ comments.append(f"[Error] Expected 100 rows, but found {row_count}")
48
+ process_ok = False
49
+ else:
50
+ comments.append("All user data validated successfully!")
51
+ result_ok = True
52
+
53
+ except Exception as e:
54
+ comments.append(f"[Exception] File parsing error: {str(e)}")
55
+ process_ok = False
56
+
57
+ return {
58
+ "Process": process_ok,
59
+ "Result": result_ok,
60
+ "TimePoint": datetime.now().isoformat(),
61
+ "comments": " | ".join(comments)
62
+ }
63
+
64
+
65
+ def main():
66
+ parser = argparse.ArgumentParser(description="Validate generated fake user data")
67
+ parser.add_argument('--output', type=str, required=True, help="CSV file path")
68
+ parser.add_argument('--result', type=str, required=True, help="Result output JSONL path")
69
+ args = parser.parse_args()
70
+
71
+ result_record = validate_fake_users(args.output)
72
+
73
+ os.makedirs(os.path.dirname(args.result), exist_ok=True)
74
+ with open(args.result, 'a', encoding='utf-8') as f:
75
+ f.write(json.dumps(result_record, ensure_ascii=False, default=str) + '\n')
76
+
77
+ if __name__ == "__main__":
78
+ main()
test_scripts/Faker_02/test_script.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import argparse
3
+ import json
4
+ from datetime import datetime
5
+ import os
6
+
7
+
8
+ def validate_fake_companies(file_path, expected_num_companies=5, result_file=None):
9
+ if not file_path.lower().endswith('.csv'):
10
+ msg = f"Error: File {file_path} is not a CSV file."
11
+ print(msg)
12
+ if result_file:
13
+ record_result(result_file, False, msg, process_success=False)
14
+ return False
15
+
16
+ try:
17
+ with open(file_path, 'r', encoding='utf-8') as file:
18
+ reader = csv.DictReader(file)
19
+ rows = list(reader)
20
+ except Exception as e:
21
+ msg = f"Error: Unable to read file {file_path}, reason: {str(e)}"
22
+ print(msg)
23
+ if result_file:
24
+ record_result(result_file, False, msg, process_success=False)
25
+ return False
26
+
27
+ if not rows:
28
+ msg = "Error: CSV file is empty or contains no valid data rows."
29
+ print(msg)
30
+ if result_file:
31
+ record_result(result_file, False, msg, process_success=True)
32
+ return False
33
+
34
+ if len(rows) != expected_num_companies:
35
+ msg = f"Error: Expected {expected_num_companies} records, but got {len(rows)}."
36
+ print(msg)
37
+ if result_file:
38
+ record_result(result_file, False, msg, process_success=True)
39
+ return False
40
+
41
+ required_fields = ['company name', 'address', 'phone']
42
+ for idx, row in enumerate(rows, 1):
43
+ normalized_row = {k.lower().strip(): v.strip() for k, v in row.items()}
44
+
45
+ for field in required_fields:
46
+ if field not in normalized_row:
47
+ msg = f"Error: Row {idx} is missing field '{field}'."
48
+ print(msg)
49
+ if result_file:
50
+ record_result(result_file, False, msg, process_success=True)
51
+ return False
52
+
53
+ value = normalized_row[field]
54
+ if not value:
55
+ msg = f"Error: Row {idx} has empty value for field '{field}'."
56
+ print(msg)
57
+ if result_file:
58
+ record_result(result_file, False, msg, process_success=True)
59
+ return False
60
+
61
+ # Basic content checks
62
+ if field == "phone" and not any(char.isdigit() for char in value):
63
+ msg = f"Error: Row {idx} field 'Phone' should contain digits."
64
+ print(msg)
65
+ if result_file:
66
+ record_result(result_file, False, msg, process_success=True)
67
+ return False
68
+ if field == "company name" and value.isdigit():
69
+ msg = f"Error: Row {idx} field 'Company Name' should not be all digits."
70
+ print(msg)
71
+ if result_file:
72
+ record_result(result_file, False, msg, process_success=True)
73
+ return False
74
+ if field == "address" and len(value) < 5:
75
+ msg = f"Error: Row {idx} field 'Address' seems too short to be valid."
76
+ print(msg)
77
+ if result_file:
78
+ record_result(result_file, False, msg, process_success=True)
79
+ return False
80
+
81
+ success_msg = f"All {expected_num_companies} company records passed structural and content checks."
82
+ print(success_msg)
83
+ if result_file:
84
+ record_result(result_file, True, success_msg, process_success=True)
85
+ return True
86
+
87
+
88
+ def record_result(result_file, result, comments, process_success=True):
89
+ # Get current timestamp
90
+ time_point = datetime.now().strftime('%Y-%m-%dT%H:%M:%S')
91
+
92
+ # Build result dictionary
93
+ result_data = {
94
+ "Process": process_success,
95
+ "Result": result,
96
+ "TimePoint": time_point,
97
+ "comments": comments
98
+ }
99
+
100
+ # Write to jsonl file
101
+ try:
102
+ # Create file if it doesn't exist and append result
103
+ with open(result_file, 'a', encoding='utf-8') as file:
104
+ json.dump(result_data, file, ensure_ascii=False, default=str)
105
+ file.write('\n') # Write each result on new line
106
+ except Exception as e:
107
+ print(f"Error: Unable to write to result file {result_file}, reason: {str(e)}")
108
+
109
+
110
+ if __name__ == "__main__":
111
+ parser = argparse.ArgumentParser(description="Validate generated fake company data")
112
+ parser.add_argument('--output', type=str, required=True, help="Path to generated CSV file")
113
+ parser.add_argument('--result', type=str, required=False, help="Path to save results in jsonl format",
114
+ default="test_results.jsonl")
115
+ args = parser.parse_args()
116
+
117
+ # Execute validation
118
+ validate_fake_companies(args.output, result_file=args.result)
test_scripts/Faker_03/test_script.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import re
3
+ import json
4
+ from datetime import datetime
5
+ import os
6
+
7
+
8
+ def jaccard_similarity_tokens(str1, str2):
9
+ # Token-based Jaccard similarity
10
+ tokens1 = set(re.findall(r'\w+', str1.lower()))
11
+ tokens2 = set(re.findall(r'\w+', str2.lower()))
12
+ if not tokens1 or not tokens2:
13
+ return 0.0
14
+ intersection = len(tokens1 & tokens2)
15
+ union = len(tokens1 | tokens2)
16
+ return intersection / union
17
+
18
+
19
+ def validate_fake_text(input_file, output_file, result_file=None):
20
+ try:
21
+ with open(input_file, 'r', encoding='utf-8') as file:
22
+ original_content = file.read()
23
+ except Exception as e:
24
+ msg = f"Error: Unable to read original text file {input_file}, reason: {str(e)}"
25
+ print(msg)
26
+ if result_file:
27
+ record_result(result_file, False, msg)
28
+ return False
29
+
30
+ try:
31
+ with open(output_file, 'r', encoding='utf-8') as file:
32
+ fake_content = file.read()
33
+ except Exception as e:
34
+ msg = f"Error: Unable to read fake text file {output_file}, reason: {str(e)}"
35
+ print(msg)
36
+ if result_file:
37
+ record_result(result_file, False, msg)
38
+ return False
39
+
40
+ # Early checks
41
+ if original_content.strip() == fake_content.strip():
42
+ msg = "Error: Output text is identical to input text. No replacement performed."
43
+ print(msg)
44
+ if result_file:
45
+ record_result(result_file, False, msg)
46
+ return False
47
+
48
+ if len(fake_content.strip()) < 20:
49
+ msg = "Error: Output fake text is too short to be valid replacement."
50
+ print(msg)
51
+ if result_file:
52
+ record_result(result_file, False, msg)
53
+ return False
54
+
55
+ # Token-based similarity
56
+ similarity = jaccard_similarity_tokens(original_content, fake_content)
57
+ print(f"Token-based Jaccard similarity: {similarity:.4f}")
58
+
59
+ threshold = 0.3 # Token-level threshold
60
+
61
+ if similarity < threshold:
62
+ result_message = f"✅ Fake text replacement successful. Similarity {similarity:.4f} below threshold."
63
+ print(result_message)
64
+ if result_file:
65
+ record_result(result_file, True, result_message)
66
+ return True
67
+ else:
68
+ result_message = f"❌ Fake text too similar to original. Similarity {similarity:.4f} above threshold."
69
+ print(result_message)
70
+ if result_file:
71
+ record_result(result_file, False, result_message)
72
+ return False
73
+
74
+
75
+
76
+ def record_result(result_file, result, comments):
77
+ # Get current timestamp
78
+ time_point = datetime.now().strftime('%Y-%m-%dT%H:%M:%S')
79
+
80
+ # Build result dictionary
81
+ result_data = {
82
+ "Process": True,
83
+ "Result": result,
84
+ "TimePoint": time_point,
85
+ "comments": comments
86
+ }
87
+
88
+ # Write to jsonl file
89
+ try:
90
+ # Create file if it doesn't exist and write
91
+ file_exists = os.path.exists(result_file)
92
+ with open(result_file, 'a', encoding='utf-8') as file:
93
+ if not file_exists:
94
+ # Write empty json line if file doesn't exist (optional)
95
+ file.write('\n')
96
+ json.dump(result_data, file, ensure_ascii=False, default=str)
97
+ file.write('\n')
98
+ except Exception as e:
99
+ print(f"Error: Unable to write to result file {result_file}, reason: {str(e)}")
100
+
101
+
102
+ if __name__ == "__main__":
103
+ parser = argparse.ArgumentParser(description="Validate effectiveness of fake text replacement")
104
+ parser.add_argument("--groundtruth", type=str, required=True, help="Path to original text file")
105
+ parser.add_argument("--output", type=str, required=True, help="Path to generated fake text file")
106
+ parser.add_argument("--result", type=str, required=False, help="Path to save results in jsonl format",
107
+ default="test_results.jsonl")
108
+
109
+ args = parser.parse_args()
110
+
111
+ # Call test function
112
+ validate_fake_text(args.groundtruth, args.output, result_file=args.result)
test_scripts/FunASR_01/test_script.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import datetime
5
+ import numpy as np
6
+
7
+
8
+ def check_file_exists(file_path):
9
+ """Check if file exists and is not empty"""
10
+ if not os.path.exists(file_path):
11
+ return False, f"File does not exist: {file_path}"
12
+ if os.path.getsize(file_path) == 0:
13
+ return False, f"File is empty: {file_path}"
14
+ return True, ""
15
+
16
+
17
+ def cer(ref, hyp):
18
+ """Character Error Rate using Levenshtein distance"""
19
+ r = ref
20
+ h = hyp
21
+ d = np.zeros((len(r)+1)*(len(h)+1), dtype=np.uint8).reshape((len(r)+1, len(h)+1))
22
+
23
+ for i in range(len(r)+1):
24
+ d[i][0] = i
25
+ for j in range(len(h)+1):
26
+ d[0][j] = j
27
+
28
+ for i in range(1, len(r)+1):
29
+ for j in range(1, len(h)+1):
30
+ cost = 0 if r[i-1] == h[j-1] else 1
31
+ d[i][j] = min(d[i-1][j] + 1, # deletion
32
+ d[i][j-1] + 1, # insertion
33
+ d[i-1][j-1] + cost) # substitution
34
+
35
+ return d[len(r)][len(h)] / max(len(r), 1)
36
+
37
+
38
+ def load_text(file_path):
39
+ """Load full text content from file"""
40
+ try:
41
+ with open(file_path, 'r', encoding='utf-8') as f:
42
+ return f.read().replace('\n', '').strip(), ""
43
+ except Exception as e:
44
+ return None, str(e)
45
+
46
+
47
+ def evaluate(system_output_file, ground_truth_file, cer_threshold=0.05):
48
+ """Evaluate CER between system output and ground truth"""
49
+ # Check files
50
+ process_ok, process_msg = check_file_exists(system_output_file)
51
+ if not process_ok:
52
+ return False, False, process_msg
53
+
54
+ process_ok, process_msg = check_file_exists(ground_truth_file)
55
+ if not process_ok:
56
+ return False, False, process_msg
57
+
58
+ # Load content
59
+ sys_text, msg1 = load_text(system_output_file)
60
+ gt_text, msg2 = load_text(ground_truth_file)
61
+
62
+ if sys_text is None:
63
+ return True, False, f"Failed to load system output: {msg1}"
64
+ if gt_text is None:
65
+ return True, False, f"Failed to load ground truth: {msg2}"
66
+
67
+ score = cer(gt_text, sys_text)
68
+ comment = f"CER = {score:.4f}"
69
+ if score > cer_threshold:
70
+ comment += f" ❌ Exceeds threshold {cer_threshold}"
71
+ return True, False, comment
72
+ else:
73
+ comment += f" ✅ Within threshold {cer_threshold}"
74
+ return True, True, comment
75
+
76
+
77
+ def save_results_to_jsonl(process_ok, result_ok, comments, jsonl_file):
78
+ """Save test results to JSONL file"""
79
+ current_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
80
+
81
+ result_data = {
82
+ "Process": bool(process_ok),
83
+ "Result": bool(result_ok),
84
+ "TimePoint": current_time,
85
+ "comments": comments
86
+ }
87
+
88
+ os.makedirs(os.path.dirname(jsonl_file), exist_ok=True)
89
+
90
+ with open(jsonl_file, 'a', encoding='utf-8') as f:
91
+ json.dump(result_data, f, ensure_ascii=False, default=str)
92
+ f.write('\n')
93
+
94
+
95
+ def main():
96
+ parser = argparse.ArgumentParser(description='Evaluate speech recognition results (no speaker separation)')
97
+ parser.add_argument('--output', required=True, help='System output file path')
98
+ parser.add_argument('--groundtruth', required=True, help='Ground truth file path')
99
+ parser.add_argument('--cer_threshold', type=float, default=0.10, help='CER threshold')
100
+ parser.add_argument('--result', required=True, help='Result JSONL file path')
101
+
102
+ args = parser.parse_args()
103
+
104
+ process_ok, result_ok, comments = evaluate(
105
+ args.output,
106
+ args.groundtruth,
107
+ args.cer_threshold
108
+ )
109
+
110
+ save_results_to_jsonl(process_ok, result_ok, comments, args.result)
111
+
112
+ if not process_ok:
113
+ print(f"Processing failed: {comments}")
114
+ elif not result_ok:
115
+ print(f"Results do not meet requirements: {comments}")
116
+ else:
117
+ print("✅ Test passed")
118
+ print(comments)
119
+
120
+
121
+ if __name__ == "__main__":
122
+ main()
test_scripts/FunASR_02/test_script.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import json
4
+ import argparse
5
+ from difflib import SequenceMatcher
6
+ import datetime
7
+ import re
8
+
9
+ def check_file_exists(file_path):
10
+ """Check if file exists and is not empty"""
11
+ if not os.path.exists(file_path):
12
+ return False, f"File does not exist: {file_path}"
13
+ if os.path.getsize(file_path) == 0:
14
+ return False, f"File is empty: {file_path}"
15
+ return True, ""
16
+
17
+
18
+ def cer(ref, hyp):
19
+ """Character Error Rate = Edit Distance / Length of Reference"""
20
+ import numpy as np
21
+ ref = list(ref)
22
+ hyp = list(hyp)
23
+ d = np.zeros((len(ref)+1, len(hyp)+1), dtype=int)
24
+ for i in range(len(ref)+1):
25
+ d[i][0] = i
26
+ for j in range(len(hyp)+1):
27
+ d[0][j] = j
28
+ for i in range(1, len(ref)+1):
29
+ for j in range(1, len(hyp)+1):
30
+ cost = 0 if ref[i-1] == hyp[j-1] else 1
31
+ d[i][j] = min(
32
+ d[i-1][j] + 1, # deletion
33
+ d[i][j-1] + 1, # insertion
34
+ d[i-1][j-1] + cost # substitution
35
+ )
36
+ return d[len(ref)][len(hyp)] / max(len(ref), 1)
37
+
38
+
39
+ def is_likely_english(text):
40
+ english_letters = re.findall(r'[a-zA-Z]', text)
41
+ if not english_letters:
42
+ return False
43
+ ratio = len(english_letters) / max(len(text), 1)
44
+ return ratio > 0.5 and len(english_letters) >= 10 # at least 10 letters, >50% are English
45
+
46
+
47
+
48
+ def load_transcripts(file_path):
49
+ """Load transcript text from file"""
50
+ try:
51
+ with open(file_path, 'r', encoding='utf-8') as f:
52
+ return f.read().replace("\n", ""), ""
53
+ except Exception as e:
54
+ return None, str(e)
55
+
56
+
57
+ def evaluate(system_output_file, ground_truth_file, cer_threshold=0.05):
58
+ """Main evaluation function: Calculate CER between system output and ground truth"""
59
+ # Check files
60
+ process_ok, process_msg = check_file_exists(system_output_file)
61
+ if not process_ok:
62
+ return False, False, process_msg
63
+
64
+ process_ok, process_msg = check_file_exists(ground_truth_file)
65
+ if not process_ok:
66
+ return False, False, process_msg
67
+
68
+ # Load transcripts
69
+ system_trans, msg = load_transcripts(system_output_file)
70
+ if system_trans is None:
71
+ return True, False, f"Failed to load system output: {msg}"
72
+
73
+ ground_truth, msg = load_transcripts(ground_truth_file)
74
+ if ground_truth is None:
75
+ return True, False, f"Failed to load ground truth: {msg}"
76
+
77
+ if not is_likely_english(system_trans):
78
+ return True, False, "Output text does not appear to be valid English transcription"
79
+
80
+ # Calculate CER
81
+ score = cer(ground_truth, system_trans)
82
+ comments = [f"CER = {score:.4f}"]
83
+
84
+ result_ok = score <= cer_threshold
85
+ if not result_ok:
86
+ comments.append(f"CER ({score:.4f}) exceeds threshold {cer_threshold}")
87
+
88
+ return True, result_ok, "\n".join(comments)
89
+
90
+
91
+ def save_results_to_jsonl(process_ok, result_ok, comments, jsonl_file):
92
+ """Save test results to JSONL file"""
93
+ current_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
94
+
95
+ result_data = {
96
+ "Process": bool(process_ok),
97
+ "Result": bool(result_ok),
98
+ "TimePoint": current_time,
99
+ "comments": comments
100
+ }
101
+
102
+ os.makedirs(os.path.dirname(jsonl_file), exist_ok=True)
103
+
104
+ with open(jsonl_file, 'a', encoding='utf-8') as f:
105
+ json.dump(result_data, f, ensure_ascii=False, default=str)
106
+ f.write('\n')
107
+
108
+
109
+ def main():
110
+ parser = argparse.ArgumentParser(description='Evaluate speech recognition results')
111
+ parser.add_argument('--output', required=True, help='System output file path')
112
+ parser.add_argument('--groundtruth', required=True, help='Ground truth file path')
113
+ parser.add_argument('--cer_threshold', type=float, default=0.10, help='CER threshold')
114
+ parser.add_argument('--result', required=True, help='Result JSONL file path')
115
+
116
+ args = parser.parse_args()
117
+
118
+ process_ok, result_ok, comments = evaluate(
119
+ args.output,
120
+ args.groundtruth,
121
+ args.cer_threshold
122
+ )
123
+
124
+ save_results_to_jsonl(process_ok, result_ok, comments, args.result)
125
+
126
+ if not process_ok:
127
+ print(f"Processing failed: {comments}")
128
+ if not result_ok:
129
+ print(f"Results do not meet requirements: {comments}")
130
+ print("Test completed") # Changed to neutral prompt
131
+
132
+
133
+ if __name__ == "__main__":
134
+ main()
test_scripts/FunASR_03/test_script.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import jieba
3
+ import re
4
+ import json
5
+ from jiwer import compute_measures
6
+ from datetime import datetime
7
+ import os
8
+ from collections import Counter
9
+
10
+
11
+ def parse_args():
12
+ parser = argparse.ArgumentParser(description="Evaluate text similarity between FunASR output and ground truth")
13
+ parser.add_argument('--output', default='output.txt', help='FunASR output file path')
14
+ parser.add_argument('--groundtruth', default='gt.txt', help='Ground truth file path')
15
+ parser.add_argument('--result', default='eval_results.jsonl', help='JSONL file path to save evaluation results')
16
+ parser.add_argument('--wer_threshold', type=float, default=0.3,
17
+ help='WER threshold, task considered successful if below this value')
18
+ parser.add_argument('--punctuation_threshold', type=float, default=0.7,
19
+ help='Punctuation matching threshold, task considered failed if below this value')
20
+ return parser.parse_args()
21
+
22
+
23
+ def preprocess_text(text):
24
+ """Preprocess text: remove punctuation and spaces, tokenize with jieba"""
25
+ text = re.sub(r'[^\w\s]', '', text)
26
+ text = text.replace(" ", "")
27
+ return " ".join(jieba.cut(text))
28
+
29
+
30
+ def extract_punctuation(text):
31
+ """Extract punctuation characters from text"""
32
+ return re.findall(r'[^\w\s]', text)
33
+
34
+
35
+ def punctuation_match_score(output_puncs, gt_puncs):
36
+ """Compute matching score based on overlapping punctuation"""
37
+ output_counter = Counter(output_puncs)
38
+ gt_counter = Counter(gt_puncs)
39
+ common = sum((output_counter & gt_counter).values())
40
+ total = max(len(gt_puncs), 1)
41
+ return common / total
42
+
43
+
44
+ def load_text(file_path, is_output=False):
45
+ """Load text file, extract 'text' field from FunASR output when is_output=True"""
46
+ try:
47
+ with open(file_path, 'r', encoding='utf-8') as f:
48
+ content = f.read().strip()
49
+ if not content:
50
+ raise ValueError(f"File {file_path} is empty")
51
+
52
+ if is_output:
53
+ match = re.search(r"'text':\s*'([^']*)'", content)
54
+ if match:
55
+ extracted_text = match.group(1)
56
+ else:
57
+ extracted_text = content
58
+ return preprocess_text(extracted_text), extracted_text
59
+ else:
60
+ return preprocess_text(content), content
61
+ except FileNotFoundError:
62
+ return "", False
63
+ except Exception as e:
64
+ return "", False
65
+
66
+
67
+
68
+ def evaluate(output_file, gt_file, result_file, wer_threshold, punctuation_threshold):
69
+ comments = []
70
+ process_success = False
71
+ result_success = False
72
+
73
+ output_text, output_raw = load_text(output_file, is_output=True)
74
+ gt_text, gt_raw = load_text(gt_file, is_output=False)
75
+
76
+ if output_text and gt_text:
77
+ process_success = True
78
+ comments.append("Input files exist, are non-empty and correctly formatted")
79
+ else:
80
+ comments.append("Input file issues:")
81
+ if not output_text:
82
+ comments.append(f"Output file {output_file} does not exist or has incorrect format")
83
+ if not gt_text:
84
+ comments.append(f"Ground truth file {gt_file} does not exist or has incorrect format")
85
+
86
+ wer_score = None
87
+ punctuation_score = None
88
+
89
+ if process_success:
90
+ try:
91
+ measures = compute_measures(gt_text, output_text)
92
+ wer_score = measures['wer']
93
+
94
+ output_puncs = extract_punctuation(output_raw)
95
+ gt_puncs = extract_punctuation(gt_raw)
96
+ punctuation_score = punctuation_match_score(output_puncs, gt_puncs)
97
+
98
+ comments.append(f"Word Error Rate (WER): {wer_score:.4f}")
99
+ comments.append(f"Punctuation matching score: {punctuation_score:.4f}")
100
+
101
+ if wer_score <= wer_threshold and punctuation_score >= punctuation_threshold:
102
+ result_success = True
103
+ comments.append("Task completed successfully (WER and punctuation both meet thresholds)")
104
+ else:
105
+ comments.append(
106
+ f"Task failed (WER {'above' if wer_score > wer_threshold else 'below'} threshold {wer_threshold}, "
107
+ f"punctuation {'below' if punctuation_score < punctuation_threshold else 'meets'} threshold {punctuation_threshold})"
108
+ )
109
+ except Exception as e:
110
+ comments.append(f"Exception occurred during evaluation: {str(e)}")
111
+ else:
112
+ comments.append("Evaluation not performed due to invalid input files")
113
+
114
+ for c in comments:
115
+ print(c)
116
+
117
+ result_entry = {
118
+ "Process": process_success,
119
+ "Result": result_success,
120
+ "TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
121
+ "comments": "; ".join(comments)
122
+ }
123
+
124
+ try:
125
+ os.makedirs(os.path.dirname(result_file), exist_ok=True)
126
+ with open(result_file, 'a', encoding='utf-8') as f:
127
+ json.dump(result_entry, f, ensure_ascii=False, default=str)
128
+ f.write('\n')
129
+ except Exception as e:
130
+ print(f"Error saving result to {result_file}: {str(e)}")
131
+
132
+
133
+ if __name__ == "__main__":
134
+ args = parse_args()
135
+ evaluate(args.output, args.groundtruth, args.result, args.wer_threshold, args.punctuation_threshold)
test_scripts/InvisibleWatermark_01/imwatermark/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .watermark import WatermarkEncoder, WatermarkDecoder
test_scripts/InvisibleWatermark_01/imwatermark/dwtDctSvd.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import copy
3
+ import cv2
4
+ import pywt
5
+ import math
6
+ import pprint
7
+
8
+ pp = pprint.PrettyPrinter(indent=2)
9
+
10
+
11
+ class EmbedDwtDctSvd(object):
12
+ def __init__(self, watermarks=[], wmLen=8, scales=[0,36,0], block=4):
13
+ self._watermarks = watermarks
14
+ self._wmLen = wmLen
15
+ self._scales = scales
16
+ self._block = block
17
+
18
+ def encode(self, bgr):
19
+ (row, col, channels) = bgr.shape
20
+
21
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
22
+
23
+ for channel in range(2):
24
+ if self._scales[channel] <= 0:
25
+ continue
26
+
27
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
28
+ self.encode_frame(ca1, self._scales[channel])
29
+
30
+ yuv[:row//4*4,:col//4*4,channel] = pywt.idwt2((ca1, (v1,h1,d1)), 'haar')
31
+
32
+ bgr_encoded = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
33
+ return bgr_encoded
34
+
35
+ def decode(self, bgr):
36
+ (row, col, channels) = bgr.shape
37
+
38
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
39
+
40
+ scores = [[] for i in range(self._wmLen)]
41
+ for channel in range(2):
42
+ if self._scales[channel] <= 0:
43
+ continue
44
+
45
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
46
+
47
+ scores = self.decode_frame(ca1, self._scales[channel], scores)
48
+
49
+ avgScores = list(map(lambda l: np.array(l).mean(), scores))
50
+
51
+ bits = (np.array(avgScores) * 255 > 127)
52
+ return bits
53
+
54
+ def decode_frame(self, frame, scale, scores):
55
+ (row, col) = frame.shape
56
+ num = 0
57
+
58
+ for i in range(row//self._block):
59
+ for j in range(col//self._block):
60
+ block = frame[i*self._block : i*self._block + self._block,
61
+ j*self._block : j*self._block + self._block]
62
+
63
+ score = self.infer_dct_svd(block, scale)
64
+ wmBit = num % self._wmLen
65
+ scores[wmBit].append(score)
66
+ num = num + 1
67
+
68
+ return scores
69
+
70
+ def diffuse_dct_svd(self, block, wmBit, scale):
71
+ u,s,v = np.linalg.svd(cv2.dct(block))
72
+
73
+ s[0] = (s[0] // scale + 0.25 + 0.5 * wmBit) * scale
74
+ return cv2.idct(np.dot(u, np.dot(np.diag(s), v)))
75
+
76
+ def infer_dct_svd(self, block, scale):
77
+ u,s,v = np.linalg.svd(cv2.dct(block))
78
+
79
+ score = 0
80
+ score = int ((s[0] % scale) > scale * 0.5)
81
+ return score
82
+ if score >= 0.5:
83
+ return 1.0
84
+ else:
85
+ return 0.0
86
+
87
+ def encode_frame(self, frame, scale):
88
+ '''
89
+ frame is a matrix (M, N)
90
+
91
+ we get K (watermark bits size) blocks (self._block x self._block)
92
+
93
+ For i-th block, we encode watermark[i] bit into it
94
+ '''
95
+ (row, col) = frame.shape
96
+ num = 0
97
+ for i in range(row//self._block):
98
+ for j in range(col//self._block):
99
+ block = frame[i*self._block : i*self._block + self._block,
100
+ j*self._block : j*self._block + self._block]
101
+ wmBit = self._watermarks[(num % self._wmLen)]
102
+
103
+
104
+ diffusedBlock = self.diffuse_dct_svd(block, wmBit, scale)
105
+ frame[i*self._block : i*self._block + self._block,
106
+ j*self._block : j*self._block + self._block] = diffusedBlock
107
+
108
+ num = num+1
test_scripts/InvisibleWatermark_01/imwatermark/maxDct.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import copy
3
+ import cv2
4
+ import pywt
5
+ import math
6
+ import pprint
7
+
8
+ pp = pprint.PrettyPrinter(indent=2)
9
+
10
+
11
+ class EmbedMaxDct(object):
12
+ def __init__(self, watermarks=[], wmLen=8, scales=[0,36,36], block=4):
13
+ self._watermarks = watermarks
14
+ self._wmLen = wmLen
15
+ self._scales = scales
16
+ self._block = block
17
+
18
+ def encode(self, bgr):
19
+ (row, col, channels) = bgr.shape
20
+
21
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
22
+
23
+ for channel in range(2):
24
+ if self._scales[channel] <= 0:
25
+ continue
26
+
27
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
28
+ self.encode_frame(ca1, self._scales[channel])
29
+
30
+ yuv[:row//4*4,:col//4*4,channel] = pywt.idwt2((ca1, (v1,h1,d1)), 'haar')
31
+
32
+ bgr_encoded = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
33
+ return bgr_encoded
34
+
35
+ def decode(self, bgr):
36
+ (row, col, channels) = bgr.shape
37
+
38
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
39
+
40
+ scores = [[] for i in range(self._wmLen)]
41
+ for channel in range(2):
42
+ if self._scales[channel] <= 0:
43
+ continue
44
+
45
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
46
+
47
+ scores = self.decode_frame(ca1, self._scales[channel], scores)
48
+
49
+ avgScores = list(map(lambda l: np.array(l).mean(), scores))
50
+
51
+ bits = (np.array(avgScores) * 255 > 127)
52
+ return bits
53
+
54
+ def decode_frame(self, frame, scale, scores):
55
+ (row, col) = frame.shape
56
+ num = 0
57
+
58
+ for i in range(row//self._block):
59
+ for j in range(col//self._block):
60
+ block = frame[i*self._block : i*self._block + self._block,
61
+ j*self._block : j*self._block + self._block]
62
+
63
+ score = self.infer_dct_matrix(block, scale)
64
+ #score = self.infer_dct_svd(block, scale)
65
+ wmBit = num % self._wmLen
66
+ scores[wmBit].append(score)
67
+ num = num + 1
68
+
69
+ return scores
70
+
71
+ def diffuse_dct_svd(self, block, wmBit, scale):
72
+ u,s,v = np.linalg.svd(cv2.dct(block))
73
+
74
+ s[0] = (s[0] // scale + 0.25 + 0.5 * wmBit) * scale
75
+ return cv2.idct(np.dot(u, np.dot(np.diag(s), v)))
76
+
77
+ def infer_dct_svd(self, block, scale):
78
+ u,s,v = np.linalg.svd(cv2.dct(block))
79
+
80
+ score = 0
81
+ score = int ((s[0] % scale) > scale * 0.5)
82
+ return score
83
+ if score >= 0.5:
84
+ return 1.0
85
+ else:
86
+ return 0.0
87
+
88
+ def diffuse_dct_matrix(self, block, wmBit, scale):
89
+ pos = np.argmax(abs(block.flatten()[1:])) + 1
90
+ i, j = pos // self._block, pos % self._block
91
+ val = block[i][j]
92
+ if val >= 0.0:
93
+ block[i][j] = (val//scale + 0.25 + 0.5 * wmBit) * scale
94
+ else:
95
+ val = abs(val)
96
+ block[i][j] = -1.0 * (val//scale + 0.25 + 0.5 * wmBit) * scale
97
+ return block
98
+
99
+ def infer_dct_matrix(self, block, scale):
100
+ pos = np.argmax(abs(block.flatten()[1:])) + 1
101
+ i, j = pos // self._block, pos % self._block
102
+
103
+ val = block[i][j]
104
+ if val < 0:
105
+ val = abs(val)
106
+
107
+ if (val % scale) > 0.5 * scale:
108
+ return 1
109
+ else:
110
+ return 0
111
+
112
+ def encode_frame(self, frame, scale):
113
+ '''
114
+ frame is a matrix (M, N)
115
+
116
+ we get K (watermark bits size) blocks (self._block x self._block)
117
+
118
+ For i-th block, we encode watermark[i] bit into it
119
+ '''
120
+ (row, col) = frame.shape
121
+ num = 0
122
+ for i in range(row//self._block):
123
+ for j in range(col//self._block):
124
+ block = frame[i*self._block : i*self._block + self._block,
125
+ j*self._block : j*self._block + self._block]
126
+ wmBit = self._watermarks[(num % self._wmLen)]
127
+
128
+
129
+ diffusedBlock = self.diffuse_dct_matrix(block, wmBit, scale)
130
+ #diffusedBlock = self.diffuse_dct_svd(block, wmBit, scale)
131
+ frame[i*self._block : i*self._block + self._block,
132
+ j*self._block : j*self._block + self._block] = diffusedBlock
133
+
134
+ num = num+1
test_scripts/InvisibleWatermark_01/imwatermark/rivaGan.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import cv2
4
+ import os
5
+ import time
6
+
7
+
8
+ class RivaWatermark(object):
9
+ encoder = None
10
+ decoder = None
11
+
12
+ def __init__(self, watermarks=[], wmLen=32, threshold=0.52):
13
+ self._watermarks = watermarks
14
+ self._threshold = threshold
15
+ if wmLen not in [32]:
16
+ raise RuntimeError('rivaGan only supports 32 bits watermarks now.')
17
+ self._data = torch.from_numpy(np.array([self._watermarks], dtype=np.float32))
18
+
19
+ @classmethod
20
+ def loadModel(cls):
21
+ try:
22
+ import onnxruntime
23
+ except ImportError:
24
+ raise ImportError(
25
+ "The `RivaWatermark` class requires onnxruntime to be installed. "
26
+ "You can install it with pip: `pip install onnxruntime`."
27
+ )
28
+
29
+ if RivaWatermark.encoder and RivaWatermark.decoder:
30
+ return
31
+ modelDir = os.path.dirname(os.path.abspath(__file__))
32
+ RivaWatermark.encoder = onnxruntime.InferenceSession(
33
+ os.path.join(modelDir, 'rivagan_encoder.onnx'))
34
+ RivaWatermark.decoder = onnxruntime.InferenceSession(
35
+ os.path.join(modelDir, 'rivagan_decoder.onnx'))
36
+
37
+ def encode(self, frame):
38
+ if not RivaWatermark.encoder:
39
+ raise RuntimeError('call loadModel method first')
40
+
41
+ frame = torch.from_numpy(np.array([frame], dtype=np.float32)) / 127.5 - 1.0
42
+ frame = frame.permute(3, 0, 1, 2).unsqueeze(0)
43
+
44
+ inputs = {
45
+ 'frame': frame.detach().cpu().numpy(),
46
+ 'data': self._data.detach().cpu().numpy()
47
+ }
48
+
49
+ outputs = RivaWatermark.encoder.run(None, inputs)
50
+ wm_frame = outputs[0]
51
+ wm_frame = torch.clamp(torch.from_numpy(wm_frame), min=-1.0, max=1.0)
52
+ wm_frame = (
53
+ (wm_frame[0, :, 0, :, :].permute(1, 2, 0) + 1.0) * 127.5
54
+ ).detach().cpu().numpy().astype('uint8')
55
+
56
+ return wm_frame
57
+
58
+ def decode(self, frame):
59
+ if not RivaWatermark.decoder:
60
+ raise RuntimeError('you need load model first')
61
+
62
+ frame = torch.from_numpy(np.array([frame], dtype=np.float32)) / 127.5 - 1.0
63
+ frame = frame.permute(3, 0, 1, 2).unsqueeze(0)
64
+ inputs = {
65
+ 'frame': frame.detach().cpu().numpy(),
66
+ }
67
+ outputs = RivaWatermark.decoder.run(None, inputs)
68
+ data = outputs[0][0]
69
+ return np.array(data > self._threshold, dtype=np.uint8)
test_scripts/InvisibleWatermark_01/imwatermark/rivagan_decoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b006690cf352fa50a91a0b6d6241dbcded0a9957969e2c0665cf9a7011b3880
3
+ size 1088816
test_scripts/InvisibleWatermark_01/imwatermark/rivagan_encoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66bc7814fadac7d686105c8ab26c6cf2cc8e40deb83e67bb6ef5b9de9b8ece0d
3
+ size 657164
test_scripts/InvisibleWatermark_01/imwatermark/watermark.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import struct
2
+ import uuid
3
+ import copy
4
+ import base64
5
+ import cv2
6
+ import numpy as np
7
+ from .maxDct import EmbedMaxDct
8
+ from .dwtDctSvd import EmbedDwtDctSvd
9
+ from .rivaGan import RivaWatermark
10
+ import pprint
11
+
12
+ pp = pprint.PrettyPrinter(indent=2)
13
+
14
+ class WatermarkEncoder(object):
15
+ def __init__(self, content=b''):
16
+ seq = np.array([n for n in content], dtype=np.uint8)
17
+ self._watermarks = list(np.unpackbits(seq))
18
+ self._wmLen = len(self._watermarks)
19
+ self._wmType = 'bytes'
20
+
21
+ def set_by_ipv4(self, addr):
22
+ bits = []
23
+ ips = addr.split('.')
24
+ for ip in ips:
25
+ bits += list(np.unpackbits(np.array([ip % 255], dtype=np.uint8)))
26
+ self._watermarks = bits
27
+ self._wmLen = len(self._watermarks)
28
+ self._wmType = 'ipv4'
29
+ assert self._wmLen == 32
30
+
31
+ def set_by_uuid(self, uid):
32
+ u = uuid.UUID(uid)
33
+ self._wmType = 'uuid'
34
+ seq = np.array([n for n in u.bytes], dtype=np.uint8)
35
+ self._watermarks = list(np.unpackbits(seq))
36
+ self._wmLen = len(self._watermarks)
37
+
38
+ def set_by_bytes(self, content):
39
+ self._wmType = 'bytes'
40
+ seq = np.array([n for n in content], dtype=np.uint8)
41
+ self._watermarks = list(np.unpackbits(seq))
42
+ self._wmLen = len(self._watermarks)
43
+
44
+ def set_by_b16(self, b16):
45
+ content = base64.b16decode(b16)
46
+ self.set_by_bytes(content)
47
+ self._wmType = 'b16'
48
+
49
+ def set_by_bits(self, bits=[]):
50
+ self._watermarks = [int(bit) % 2 for bit in bits]
51
+ self._wmLen = len(self._watermarks)
52
+ self._wmType = 'bits'
53
+
54
+ def set_watermark(self, wmType='bytes', content=''):
55
+ if wmType == 'ipv4':
56
+ self.set_by_ipv4(content)
57
+ elif wmType == 'uuid':
58
+ self.set_by_uuid(content)
59
+ elif wmType == 'bits':
60
+ self.set_by_bits(content)
61
+ elif wmType == 'bytes':
62
+ self.set_by_bytes(content)
63
+ elif wmType == 'b16':
64
+ self.set_by_b16(content)
65
+ else:
66
+ raise NameError('%s is not supported' % wmType)
67
+
68
+ def get_length(self):
69
+ return self._wmLen
70
+
71
+ @classmethod
72
+ def loadModel(cls):
73
+ RivaWatermark.loadModel()
74
+
75
+ def encode(self, cv2Image, method='dwtDct', **configs):
76
+ (r, c, channels) = cv2Image.shape
77
+ if r*c < 256*256:
78
+ raise RuntimeError('image too small, should be larger than 256x256')
79
+
80
+ if method == 'dwtDct':
81
+ embed = EmbedMaxDct(self._watermarks, wmLen=self._wmLen, **configs)
82
+ return embed.encode(cv2Image)
83
+ elif method == 'dwtDctSvd':
84
+ embed = EmbedDwtDctSvd(self._watermarks, wmLen=self._wmLen, **configs)
85
+ return embed.encode(cv2Image)
86
+ elif method == 'rivaGan':
87
+ embed = RivaWatermark(self._watermarks, self._wmLen)
88
+ return embed.encode(cv2Image)
89
+ else:
90
+ raise NameError('%s is not supported' % method)
91
+
92
+ class WatermarkDecoder(object):
93
+ def __init__(self, wm_type='bytes', length=0):
94
+ self._wmType = wm_type
95
+ if wm_type == 'ipv4':
96
+ self._wmLen = 32
97
+ elif wm_type == 'uuid':
98
+ self._wmLen = 128
99
+ elif wm_type == 'bytes':
100
+ self._wmLen = length
101
+ elif wm_type == 'bits':
102
+ self._wmLen = length
103
+ elif wm_type == 'b16':
104
+ self._wmLen = length
105
+ else:
106
+ raise NameError('%s is unsupported' % wm_type)
107
+
108
+ def reconstruct_ipv4(self, bits):
109
+ ips = [str(ip) for ip in list(np.packbits(bits))]
110
+ return '.'.join(ips)
111
+
112
+ def reconstruct_uuid(self, bits):
113
+ nums = np.packbits(bits)
114
+ bstr = b''
115
+ for i in range(16):
116
+ bstr += struct.pack('>B', nums[i])
117
+
118
+ return str(uuid.UUID(bytes=bstr))
119
+
120
+ def reconstruct_bits(self, bits):
121
+ #return ''.join([str(b) for b in bits])
122
+ return bits
123
+
124
+ def reconstruct_b16(self, bits):
125
+ bstr = self.reconstruct_bytes(bits)
126
+ return base64.b16encode(bstr)
127
+
128
+ def reconstruct_bytes(self, bits):
129
+ nums = np.packbits(bits)
130
+ bstr = b''
131
+ for i in range(self._wmLen//8):
132
+ bstr += struct.pack('>B', nums[i])
133
+ return bstr
134
+
135
+ def reconstruct(self, bits):
136
+ if len(bits) != self._wmLen:
137
+ raise RuntimeError('bits are not matched with watermark length')
138
+
139
+ if self._wmType == 'ipv4':
140
+ return self.reconstruct_ipv4(bits)
141
+ elif self._wmType == 'uuid':
142
+ return self.reconstruct_uuid(bits)
143
+ elif self._wmType == 'bits':
144
+ return self.reconstruct_bits(bits)
145
+ elif self._wmType == 'b16':
146
+ return self.reconstruct_b16(bits)
147
+ else:
148
+ return self.reconstruct_bytes(bits)
149
+
150
+ def decode(self, cv2Image, method='dwtDct', **configs):
151
+ (r, c, channels) = cv2Image.shape
152
+ if r*c < 256*256:
153
+ raise RuntimeError('image too small, should be larger than 256x256')
154
+
155
+ bits = []
156
+ if method == 'dwtDct':
157
+ embed = EmbedMaxDct(watermarks=[], wmLen=self._wmLen, **configs)
158
+ bits = embed.decode(cv2Image)
159
+ elif method == 'dwtDctSvd':
160
+ embed = EmbedDwtDctSvd(watermarks=[], wmLen=self._wmLen, **configs)
161
+ bits = embed.decode(cv2Image)
162
+ elif method == 'rivaGan':
163
+ embed = RivaWatermark(watermarks=[], wmLen=self._wmLen, **configs)
164
+ bits = embed.decode(cv2Image)
165
+ else:
166
+ raise NameError('%s is not supported' % method)
167
+ return self.reconstruct(bits)
168
+
169
+ @classmethod
170
+ def loadModel(cls):
171
+ RivaWatermark.loadModel()
test_scripts/InvisibleWatermark_01/test_script.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import json
4
+ import os
5
+ from datetime import datetime
6
+ from imwatermark import WatermarkDecoder
7
+ from skimage.metrics import peak_signal_noise_ratio as compare_psnr
8
+
9
+ def evaluate_watermark(original_path, watermark_text, watermarked_path):
10
+ process_status = True
11
+ final_result_status = False
12
+ comments = []
13
+
14
+ # Timestamp
15
+ time_point = datetime.now().isoformat()
16
+
17
+ # Check input files
18
+ if not os.path.exists(original_path) or os.path.getsize(original_path) == 0:
19
+ comments.append(f"Error: Original image file '{original_path}' does not exist or is empty.")
20
+ process_status = False
21
+ if not os.path.exists(watermarked_path) or os.path.getsize(watermarked_path) == 0:
22
+ comments.append(f"Error: Watermarked image file '{watermarked_path}' does not exist or is empty.")
23
+ process_status = False
24
+
25
+ if process_status:
26
+ bgr_original = cv2.imread(original_path)
27
+ bgr_encoded = cv2.imread(watermarked_path)
28
+ if bgr_original is None or bgr_encoded is None:
29
+ comments.append("Error: Failed to read images, please check if files are corrupted or in correct format.")
30
+ process_status = False
31
+
32
+ if process_status:
33
+ try:
34
+ # decoder = WatermarkDecoder('bytes', len(watermark_text)*8)
35
+ # decoded_bytes = decoder.decode(bgr_encoded, 'dwtDct')
36
+ # extracted_text= decoded_bytes.decode('utf-8', errors='ignore')
37
+ # is_match = (extracted_text == watermark_text)
38
+
39
+ max_bits = 256
40
+ decoder = WatermarkDecoder('bytes', max_bits)
41
+ decoded_bytes = decoder.decode(bgr_encoded, 'dwtDct')
42
+ extracted_text = decoded_bytes.decode('utf-8', errors='ignore')
43
+
44
+ is_match = (watermark_text in extracted_text)
45
+
46
+ comments.append(f"{'✅' if is_match else '❌'} Extraction result: '{extracted_text}' | GT: '{watermark_text}'")
47
+ psnr_value = compare_psnr(bgr_original, bgr_encoded)
48
+ comments.append(f"📐 PSNR: {psnr_value:.2f} dB")
49
+
50
+ # Metrics
51
+ match_rate = '100%' if is_match else '0%'
52
+ psnr_satisfied = psnr_value >= 30.0
53
+ comments.append(f"🎯 Watermark detection_match: {match_rate}")
54
+ comments.append(f"🎯 PSNR ≥ 30.0: {'✅ Satisfied' if psnr_satisfied else '❌ Not satisfied'}")
55
+
56
+ final_result_status = is_match and psnr_satisfied
57
+ comments.append(f"Final evaluation result: Watermark match={is_match}, PSNR satisfied={psnr_satisfied}")
58
+
59
+ except Exception as e:
60
+ comments.append(f"Exception occurred during watermark processing or evaluation: {e}")
61
+ final_result_status = False
62
+
63
+ output_data = {
64
+ "Process": process_status,
65
+ "Result": final_result_status,
66
+ "TimePoint": time_point,
67
+ "Comments": "\n".join(comments)
68
+ }
69
+ print(output_data["Comments"])
70
+ return output_data
71
+
72
+ def write_to_jsonl(file_path, data):
73
+ """
74
+ Append single result to JSONL file:
75
+ Each run appends one JSON line.
76
+ """
77
+ try:
78
+ os.makedirs(os.path.dirname(file_path), exist_ok=True)
79
+ with open(file_path, 'a', encoding='utf-8') as f:
80
+ # Add default=str to handle non-serializable types with str()
81
+ f.write(json.dumps(data, ensure_ascii=False, default=str) + '\n')
82
+ print(f"✅ Result appended to JSONL file: {file_path}")
83
+ except Exception as e:
84
+ print(f"❌ Error occurred while writing to JSONL file: {e}")
85
+
86
+ if __name__ == "__main__":
87
+ parser = argparse.ArgumentParser(
88
+ description="Extract and verify blind watermark, calculate image quality, and store results as JSONL")
89
+ parser.add_argument("--groundtruth", required=True, help="Path to original image")
90
+ parser.add_argument("--output", required=True, help="Path to watermarked image")
91
+ parser.add_argument("--watermark", required=True, help="Expected watermark content to extract")
92
+ parser.add_argument("--result", help="File path to store JSONL results")
93
+
94
+ args = parser.parse_args()
95
+
96
+ evaluation_result = evaluate_watermark(
97
+ args.groundtruth, args.watermark, args.output)
98
+
99
+ if args.result:
100
+ write_to_jsonl(args.result, evaluation_result)
test_scripts/InvisibleWatermark_02/imwatermark/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .watermark import WatermarkEncoder, WatermarkDecoder
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (290 Bytes). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (252 Bytes). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (256 Bytes). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/dwtDctSvd.cpython-312.pyc ADDED
Binary file (6.62 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/maxDct.cpython-312.pyc ADDED
Binary file (7.87 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/maxDct.cpython-37.pyc ADDED
Binary file (4.4 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/maxDct.cpython-38.pyc ADDED
Binary file (4.4 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/rivaGan.cpython-312.pyc ADDED
Binary file (4.73 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/watermark.cpython-312.pyc ADDED
Binary file (10.1 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/watermark.cpython-37.pyc ADDED
Binary file (6.82 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/__pycache__/watermark.cpython-38.pyc ADDED
Binary file (6.79 kB). View file
 
test_scripts/InvisibleWatermark_02/imwatermark/dwtDctSvd.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import copy
3
+ import cv2
4
+ import pywt
5
+ import math
6
+ import pprint
7
+
8
+ pp = pprint.PrettyPrinter(indent=2)
9
+
10
+
11
+ class EmbedDwtDctSvd(object):
12
+ def __init__(self, watermarks=[], wmLen=8, scales=[0,36,0], block=4):
13
+ self._watermarks = watermarks
14
+ self._wmLen = wmLen
15
+ self._scales = scales
16
+ self._block = block
17
+
18
+ def encode(self, bgr):
19
+ (row, col, channels) = bgr.shape
20
+
21
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
22
+
23
+ for channel in range(2):
24
+ if self._scales[channel] <= 0:
25
+ continue
26
+
27
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
28
+ self.encode_frame(ca1, self._scales[channel])
29
+
30
+ yuv[:row//4*4,:col//4*4,channel] = pywt.idwt2((ca1, (v1,h1,d1)), 'haar')
31
+
32
+ bgr_encoded = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
33
+ return bgr_encoded
34
+
35
+ def decode(self, bgr):
36
+ (row, col, channels) = bgr.shape
37
+
38
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
39
+
40
+ scores = [[] for i in range(self._wmLen)]
41
+ for channel in range(2):
42
+ if self._scales[channel] <= 0:
43
+ continue
44
+
45
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
46
+
47
+ scores = self.decode_frame(ca1, self._scales[channel], scores)
48
+
49
+ avgScores = list(map(lambda l: np.array(l).mean(), scores))
50
+
51
+ bits = (np.array(avgScores) * 255 > 127)
52
+ return bits
53
+
54
+ def decode_frame(self, frame, scale, scores):
55
+ (row, col) = frame.shape
56
+ num = 0
57
+
58
+ for i in range(row//self._block):
59
+ for j in range(col//self._block):
60
+ block = frame[i*self._block : i*self._block + self._block,
61
+ j*self._block : j*self._block + self._block]
62
+
63
+ score = self.infer_dct_svd(block, scale)
64
+ wmBit = num % self._wmLen
65
+ scores[wmBit].append(score)
66
+ num = num + 1
67
+
68
+ return scores
69
+
70
+ def diffuse_dct_svd(self, block, wmBit, scale):
71
+ u,s,v = np.linalg.svd(cv2.dct(block))
72
+
73
+ s[0] = (s[0] // scale + 0.25 + 0.5 * wmBit) * scale
74
+ return cv2.idct(np.dot(u, np.dot(np.diag(s), v)))
75
+
76
+ def infer_dct_svd(self, block, scale):
77
+ u,s,v = np.linalg.svd(cv2.dct(block))
78
+
79
+ score = 0
80
+ score = int ((s[0] % scale) > scale * 0.5)
81
+ return score
82
+ if score >= 0.5:
83
+ return 1.0
84
+ else:
85
+ return 0.0
86
+
87
+ def encode_frame(self, frame, scale):
88
+ '''
89
+ frame is a matrix (M, N)
90
+
91
+ we get K (watermark bits size) blocks (self._block x self._block)
92
+
93
+ For i-th block, we encode watermark[i] bit into it
94
+ '''
95
+ (row, col) = frame.shape
96
+ num = 0
97
+ for i in range(row//self._block):
98
+ for j in range(col//self._block):
99
+ block = frame[i*self._block : i*self._block + self._block,
100
+ j*self._block : j*self._block + self._block]
101
+ wmBit = self._watermarks[(num % self._wmLen)]
102
+
103
+
104
+ diffusedBlock = self.diffuse_dct_svd(block, wmBit, scale)
105
+ frame[i*self._block : i*self._block + self._block,
106
+ j*self._block : j*self._block + self._block] = diffusedBlock
107
+
108
+ num = num+1
test_scripts/InvisibleWatermark_02/imwatermark/maxDct.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import copy
3
+ import cv2
4
+ import pywt
5
+ import math
6
+ import pprint
7
+
8
+ pp = pprint.PrettyPrinter(indent=2)
9
+
10
+
11
+ class EmbedMaxDct(object):
12
+ def __init__(self, watermarks=[], wmLen=8, scales=[0,36,36], block=4):
13
+ self._watermarks = watermarks
14
+ self._wmLen = wmLen
15
+ self._scales = scales
16
+ self._block = block
17
+
18
+ def encode(self, bgr):
19
+ (row, col, channels) = bgr.shape
20
+
21
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
22
+
23
+ for channel in range(2):
24
+ if self._scales[channel] <= 0:
25
+ continue
26
+
27
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
28
+ self.encode_frame(ca1, self._scales[channel])
29
+
30
+ yuv[:row//4*4,:col//4*4,channel] = pywt.idwt2((ca1, (v1,h1,d1)), 'haar')
31
+
32
+ bgr_encoded = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
33
+ return bgr_encoded
34
+
35
+ def decode(self, bgr):
36
+ (row, col, channels) = bgr.shape
37
+
38
+ yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
39
+
40
+ scores = [[] for i in range(self._wmLen)]
41
+ for channel in range(2):
42
+ if self._scales[channel] <= 0:
43
+ continue
44
+
45
+ ca1,(h1,v1,d1) = pywt.dwt2(yuv[:row//4*4,:col//4*4,channel], 'haar')
46
+
47
+ scores = self.decode_frame(ca1, self._scales[channel], scores)
48
+
49
+ avgScores = list(map(lambda l: np.array(l).mean(), scores))
50
+
51
+ bits = (np.array(avgScores) * 255 > 127)
52
+ return bits
53
+
54
+ def decode_frame(self, frame, scale, scores):
55
+ (row, col) = frame.shape
56
+ num = 0
57
+
58
+ for i in range(row//self._block):
59
+ for j in range(col//self._block):
60
+ block = frame[i*self._block : i*self._block + self._block,
61
+ j*self._block : j*self._block + self._block]
62
+
63
+ score = self.infer_dct_matrix(block, scale)
64
+ #score = self.infer_dct_svd(block, scale)
65
+ wmBit = num % self._wmLen
66
+ scores[wmBit].append(score)
67
+ num = num + 1
68
+
69
+ return scores
70
+
71
+ def diffuse_dct_svd(self, block, wmBit, scale):
72
+ u,s,v = np.linalg.svd(cv2.dct(block))
73
+
74
+ s[0] = (s[0] // scale + 0.25 + 0.5 * wmBit) * scale
75
+ return cv2.idct(np.dot(u, np.dot(np.diag(s), v)))
76
+
77
+ def infer_dct_svd(self, block, scale):
78
+ u,s,v = np.linalg.svd(cv2.dct(block))
79
+
80
+ score = 0
81
+ score = int ((s[0] % scale) > scale * 0.5)
82
+ return score
83
+ if score >= 0.5:
84
+ return 1.0
85
+ else:
86
+ return 0.0
87
+
88
+ def diffuse_dct_matrix(self, block, wmBit, scale):
89
+ pos = np.argmax(abs(block.flatten()[1:])) + 1
90
+ i, j = pos // self._block, pos % self._block
91
+ val = block[i][j]
92
+ if val >= 0.0:
93
+ block[i][j] = (val//scale + 0.25 + 0.5 * wmBit) * scale
94
+ else:
95
+ val = abs(val)
96
+ block[i][j] = -1.0 * (val//scale + 0.25 + 0.5 * wmBit) * scale
97
+ return block
98
+
99
+ def infer_dct_matrix(self, block, scale):
100
+ pos = np.argmax(abs(block.flatten()[1:])) + 1
101
+ i, j = pos // self._block, pos % self._block
102
+
103
+ val = block[i][j]
104
+ if val < 0:
105
+ val = abs(val)
106
+
107
+ if (val % scale) > 0.5 * scale:
108
+ return 1
109
+ else:
110
+ return 0
111
+
112
+ def encode_frame(self, frame, scale):
113
+ '''
114
+ frame is a matrix (M, N)
115
+
116
+ we get K (watermark bits size) blocks (self._block x self._block)
117
+
118
+ For i-th block, we encode watermark[i] bit into it
119
+ '''
120
+ (row, col) = frame.shape
121
+ num = 0
122
+ for i in range(row//self._block):
123
+ for j in range(col//self._block):
124
+ block = frame[i*self._block : i*self._block + self._block,
125
+ j*self._block : j*self._block + self._block]
126
+ wmBit = self._watermarks[(num % self._wmLen)]
127
+
128
+
129
+ diffusedBlock = self.diffuse_dct_matrix(block, wmBit, scale)
130
+ #diffusedBlock = self.diffuse_dct_svd(block, wmBit, scale)
131
+ frame[i*self._block : i*self._block + self._block,
132
+ j*self._block : j*self._block + self._block] = diffusedBlock
133
+
134
+ num = num+1
test_scripts/InvisibleWatermark_02/imwatermark/rivaGan.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import cv2
4
+ import os
5
+ import time
6
+
7
+
8
+ class RivaWatermark(object):
9
+ encoder = None
10
+ decoder = None
11
+
12
+ def __init__(self, watermarks=[], wmLen=32, threshold=0.52):
13
+ self._watermarks = watermarks
14
+ self._threshold = threshold
15
+ if wmLen not in [32]:
16
+ raise RuntimeError('rivaGan only supports 32 bits watermarks now.')
17
+ self._data = torch.from_numpy(np.array([self._watermarks], dtype=np.float32))
18
+
19
+ @classmethod
20
+ def loadModel(cls):
21
+ try:
22
+ import onnxruntime
23
+ except ImportError:
24
+ raise ImportError(
25
+ "The `RivaWatermark` class requires onnxruntime to be installed. "
26
+ "You can install it with pip: `pip install onnxruntime`."
27
+ )
28
+
29
+ if RivaWatermark.encoder and RivaWatermark.decoder:
30
+ return
31
+ modelDir = os.path.dirname(os.path.abspath(__file__))
32
+ RivaWatermark.encoder = onnxruntime.InferenceSession(
33
+ os.path.join(modelDir, 'rivagan_encoder.onnx'))
34
+ RivaWatermark.decoder = onnxruntime.InferenceSession(
35
+ os.path.join(modelDir, 'rivagan_decoder.onnx'))
36
+
37
+ def encode(self, frame):
38
+ if not RivaWatermark.encoder:
39
+ raise RuntimeError('call loadModel method first')
40
+
41
+ frame = torch.from_numpy(np.array([frame], dtype=np.float32)) / 127.5 - 1.0
42
+ frame = frame.permute(3, 0, 1, 2).unsqueeze(0)
43
+
44
+ inputs = {
45
+ 'frame': frame.detach().cpu().numpy(),
46
+ 'data': self._data.detach().cpu().numpy()
47
+ }
48
+
49
+ outputs = RivaWatermark.encoder.run(None, inputs)
50
+ wm_frame = outputs[0]
51
+ wm_frame = torch.clamp(torch.from_numpy(wm_frame), min=-1.0, max=1.0)
52
+ wm_frame = (
53
+ (wm_frame[0, :, 0, :, :].permute(1, 2, 0) + 1.0) * 127.5
54
+ ).detach().cpu().numpy().astype('uint8')
55
+
56
+ return wm_frame
57
+
58
+ def decode(self, frame):
59
+ if not RivaWatermark.decoder:
60
+ raise RuntimeError('you need load model first')
61
+
62
+ frame = torch.from_numpy(np.array([frame], dtype=np.float32)) / 127.5 - 1.0
63
+ frame = frame.permute(3, 0, 1, 2).unsqueeze(0)
64
+ inputs = {
65
+ 'frame': frame.detach().cpu().numpy(),
66
+ }
67
+ outputs = RivaWatermark.decoder.run(None, inputs)
68
+ data = outputs[0][0]
69
+ return np.array(data > self._threshold, dtype=np.uint8)
test_scripts/InvisibleWatermark_02/imwatermark/rivagan_decoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b006690cf352fa50a91a0b6d6241dbcded0a9957969e2c0665cf9a7011b3880
3
+ size 1088816
test_scripts/InvisibleWatermark_02/imwatermark/rivagan_encoder.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66bc7814fadac7d686105c8ab26c6cf2cc8e40deb83e67bb6ef5b9de9b8ece0d
3
+ size 657164
test_scripts/InvisibleWatermark_02/imwatermark/watermark.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import struct
2
+ import uuid
3
+ import copy
4
+ import base64
5
+ import cv2
6
+ import numpy as np
7
+ from .maxDct import EmbedMaxDct
8
+ from .dwtDctSvd import EmbedDwtDctSvd
9
+ from .rivaGan import RivaWatermark
10
+ import pprint
11
+
12
+ pp = pprint.PrettyPrinter(indent=2)
13
+
14
+ class WatermarkEncoder(object):
15
+ def __init__(self, content=b''):
16
+ seq = np.array([n for n in content], dtype=np.uint8)
17
+ self._watermarks = list(np.unpackbits(seq))
18
+ self._wmLen = len(self._watermarks)
19
+ self._wmType = 'bytes'
20
+
21
+ def set_by_ipv4(self, addr):
22
+ bits = []
23
+ ips = addr.split('.')
24
+ for ip in ips:
25
+ bits += list(np.unpackbits(np.array([ip % 255], dtype=np.uint8)))
26
+ self._watermarks = bits
27
+ self._wmLen = len(self._watermarks)
28
+ self._wmType = 'ipv4'
29
+ assert self._wmLen == 32
30
+
31
+ def set_by_uuid(self, uid):
32
+ u = uuid.UUID(uid)
33
+ self._wmType = 'uuid'
34
+ seq = np.array([n for n in u.bytes], dtype=np.uint8)
35
+ self._watermarks = list(np.unpackbits(seq))
36
+ self._wmLen = len(self._watermarks)
37
+
38
+ def set_by_bytes(self, content):
39
+ self._wmType = 'bytes'
40
+ seq = np.array([n for n in content], dtype=np.uint8)
41
+ self._watermarks = list(np.unpackbits(seq))
42
+ self._wmLen = len(self._watermarks)
43
+
44
+ def set_by_b16(self, b16):
45
+ content = base64.b16decode(b16)
46
+ self.set_by_bytes(content)
47
+ self._wmType = 'b16'
48
+
49
+ def set_by_bits(self, bits=[]):
50
+ self._watermarks = [int(bit) % 2 for bit in bits]
51
+ self._wmLen = len(self._watermarks)
52
+ self._wmType = 'bits'
53
+
54
+ def set_watermark(self, wmType='bytes', content=''):
55
+ if wmType == 'ipv4':
56
+ self.set_by_ipv4(content)
57
+ elif wmType == 'uuid':
58
+ self.set_by_uuid(content)
59
+ elif wmType == 'bits':
60
+ self.set_by_bits(content)
61
+ elif wmType == 'bytes':
62
+ self.set_by_bytes(content)
63
+ elif wmType == 'b16':
64
+ self.set_by_b16(content)
65
+ else:
66
+ raise NameError('%s is not supported' % wmType)
67
+
68
+ def get_length(self):
69
+ return self._wmLen
70
+
71
+ @classmethod
72
+ def loadModel(cls):
73
+ RivaWatermark.loadModel()
74
+
75
+ def encode(self, cv2Image, method='dwtDct', **configs):
76
+ (r, c, channels) = cv2Image.shape
77
+ if r*c < 256*256:
78
+ raise RuntimeError('image too small, should be larger than 256x256')
79
+
80
+ if method == 'dwtDct':
81
+ embed = EmbedMaxDct(self._watermarks, wmLen=self._wmLen, **configs)
82
+ return embed.encode(cv2Image)
83
+ elif method == 'dwtDctSvd':
84
+ embed = EmbedDwtDctSvd(self._watermarks, wmLen=self._wmLen, **configs)
85
+ return embed.encode(cv2Image)
86
+ elif method == 'rivaGan':
87
+ embed = RivaWatermark(self._watermarks, self._wmLen)
88
+ return embed.encode(cv2Image)
89
+ else:
90
+ raise NameError('%s is not supported' % method)
91
+
92
+ class WatermarkDecoder(object):
93
+ def __init__(self, wm_type='bytes', length=0):
94
+ self._wmType = wm_type
95
+ if wm_type == 'ipv4':
96
+ self._wmLen = 32
97
+ elif wm_type == 'uuid':
98
+ self._wmLen = 128
99
+ elif wm_type == 'bytes':
100
+ self._wmLen = length
101
+ elif wm_type == 'bits':
102
+ self._wmLen = length
103
+ elif wm_type == 'b16':
104
+ self._wmLen = length
105
+ else:
106
+ raise NameError('%s is unsupported' % wm_type)
107
+
108
+ def reconstruct_ipv4(self, bits):
109
+ ips = [str(ip) for ip in list(np.packbits(bits))]
110
+ return '.'.join(ips)
111
+
112
+ def reconstruct_uuid(self, bits):
113
+ nums = np.packbits(bits)
114
+ bstr = b''
115
+ for i in range(16):
116
+ bstr += struct.pack('>B', nums[i])
117
+
118
+ return str(uuid.UUID(bytes=bstr))
119
+
120
+ def reconstruct_bits(self, bits):
121
+ #return ''.join([str(b) for b in bits])
122
+ return bits
123
+
124
+ def reconstruct_b16(self, bits):
125
+ bstr = self.reconstruct_bytes(bits)
126
+ return base64.b16encode(bstr)
127
+
128
+ def reconstruct_bytes(self, bits):
129
+ nums = np.packbits(bits)
130
+ bstr = b''
131
+ for i in range(self._wmLen//8):
132
+ bstr += struct.pack('>B', nums[i])
133
+ return bstr
134
+
135
+ def reconstruct(self, bits):
136
+ if len(bits) != self._wmLen:
137
+ raise RuntimeError('bits are not matched with watermark length')
138
+
139
+ if self._wmType == 'ipv4':
140
+ return self.reconstruct_ipv4(bits)
141
+ elif self._wmType == 'uuid':
142
+ return self.reconstruct_uuid(bits)
143
+ elif self._wmType == 'bits':
144
+ return self.reconstruct_bits(bits)
145
+ elif self._wmType == 'b16':
146
+ return self.reconstruct_b16(bits)
147
+ else:
148
+ return self.reconstruct_bytes(bits)
149
+
150
+ def decode(self, cv2Image, method='dwtDct', **configs):
151
+ (r, c, channels) = cv2Image.shape
152
+ if r*c < 256*256:
153
+ raise RuntimeError('image too small, should be larger than 256x256')
154
+
155
+ bits = []
156
+ if method == 'dwtDct':
157
+ embed = EmbedMaxDct(watermarks=[], wmLen=self._wmLen, **configs)
158
+ bits = embed.decode(cv2Image)
159
+ elif method == 'dwtDctSvd':
160
+ embed = EmbedDwtDctSvd(watermarks=[], wmLen=self._wmLen, **configs)
161
+ bits = embed.decode(cv2Image)
162
+ elif method == 'rivaGan':
163
+ embed = RivaWatermark(watermarks=[], wmLen=self._wmLen, **configs)
164
+ bits = embed.decode(cv2Image)
165
+ else:
166
+ raise NameError('%s is not supported' % method)
167
+ return self.reconstruct(bits)
168
+
169
+ @classmethod
170
+ def loadModel(cls):
171
+ RivaWatermark.loadModel()
test_scripts/InvisibleWatermark_02/test_script.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import json
4
+ from datetime import datetime
5
+ from io import StringIO
6
+ import sys
7
+
8
+ def test_watermark_extraction(extracted_txt_path, ground_truth_path):
9
+ comments = []
10
+ process_success = True
11
+ result_success = False
12
+
13
+ try:
14
+ for path, label in [(extracted_txt_path, "Extracted result"), (ground_truth_path, "Ground Truth")]:
15
+ if not os.path.exists(path):
16
+ comments.append(f"{label} file does not exist: {path}")
17
+ process_success = False
18
+ elif os.path.getsize(path) == 0:
19
+ comments.append(f"{label} file is empty: {path}")
20
+ process_success = False
21
+
22
+ if not process_success:
23
+ return process_success, result_success, "\n".join(comments)
24
+
25
+ with open(extracted_txt_path, 'r', encoding='utf-8') as f:
26
+ extracted_watermark = f.read().strip()
27
+
28
+ with open(ground_truth_path, 'r', encoding='utf-8') as f:
29
+ ground_truth = f.read().strip()
30
+
31
+ if extracted_watermark == ground_truth:
32
+ result_success = True
33
+ comments.append("✅ Watermark extraction successful, exact match!")
34
+ else:
35
+ comments.append("❌ Watermark extraction failed, result does not match Ground Truth")
36
+ comments.append(f"Extracted watermark: {extracted_watermark}")
37
+ comments.append(f"Ground Truth: {ground_truth}")
38
+
39
+ except Exception as e:
40
+ process_success = False
41
+ comments.append(f"System exception: {str(e)}")
42
+
43
+ return process_success, result_success, "\n".join(comments)
44
+
45
+ def save_result_jsonl(result_path, process_flag, result_flag, comments_text):
46
+ record = {
47
+ "Process": process_flag,
48
+ "Result": result_flag,
49
+ "TimePoint": datetime.now().isoformat(timespec="seconds"),
50
+ "comments": comments_text
51
+ }
52
+
53
+ try:
54
+ with open(result_path, 'a', encoding='utf-8') as f:
55
+ json.dump(record, f, ensure_ascii=False)
56
+ f.write('\n')
57
+ print(f"[✅] Successfully wrote to JSONL: {result_path}")
58
+ except Exception as e:
59
+ print(f"[❌] Failed to write to JSONL: {e}")
60
+
61
+ if __name__ == "__main__":
62
+ parser = argparse.ArgumentParser(description="Evaluate watermark extraction accuracy (exact match)")
63
+ parser.add_argument("--output", required=True, help="Path to extracted watermark text file")
64
+ parser.add_argument("--groundtruth", required=True, help="Path to ground truth text file")
65
+ parser.add_argument("--result", required=False, help="JSONL output path")
66
+ args = parser.parse_args()
67
+
68
+ original_stdout = sys.stdout
69
+ buffer = StringIO()
70
+ sys.stdout = buffer
71
+
72
+ process_flag, result_flag, comments_text = test_watermark_extraction(
73
+ args.output, args.groundtruth
74
+ )
75
+
76
+ sys.stdout = original_stdout
77
+ captured_output = buffer.getvalue()
78
+ full_comments = f"{comments_text}\n{captured_output.strip()}"
79
+
80
+ if args.result:
81
+ save_result_jsonl(args.result, process_flag, result_flag, full_comments)
82
+
83
+ print(full_comments)
test_scripts/InvisibleWatermark_03/imwatermark/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .watermark import WatermarkEncoder, WatermarkDecoder
test_scripts/InvisibleWatermark_03/imwatermark/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (350 Bytes). View file
 
test_scripts/InvisibleWatermark_03/imwatermark/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (284 Bytes). View file
 
test_scripts/InvisibleWatermark_03/imwatermark/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (252 Bytes). View file