Commit
·
df57a76
1
Parent(s):
ce94b0a
feat: converting CRAG sampler to a package for simpler install and use
Browse files- .gitignore +5 -0
- crag_sampler/__init__.py +3 -0
- crag_sampler/sampler.py +118 -0
- crag_to_subsamples.py → crag_sampler/utils.py +12 -62
- examples/basic_sampling.py +65 -0
- pyproject.toml +0 -29
- requirements-dev.lock +0 -109
- requirements.lock +0 -109
- requirements.txt +3 -0
- setup.py +20 -0
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
.env
|
| 3 |
+
.venv
|
| 4 |
+
*.egg-info*
|
| 5 |
+
*__pycache__*
|
crag_sampler/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .sampler import CragSampler
|
| 2 |
+
|
| 3 |
+
__all__ = ["CragSampler"]
|
crag_sampler/sampler.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bz2
|
| 2 |
+
from typing import Iterator, Dict, Any, List, Optional
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import os
|
| 5 |
+
import hashlib
|
| 6 |
+
import json
|
| 7 |
+
from sklearn.model_selection import StratifiedKFold
|
| 8 |
+
import numpy as np
|
| 9 |
+
from multiprocessing import Pool, cpu_count
|
| 10 |
+
from functools import partial
|
| 11 |
+
import subprocess
|
| 12 |
+
|
| 13 |
+
from .utils import (
|
| 14 |
+
read_jsonl_fields_fast,
|
| 15 |
+
process_answer_types,
|
| 16 |
+
create_stratified_subsamples,
|
| 17 |
+
subsample_jsonl_file,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class CragSampler:
|
| 22 |
+
"""Main class for handling CRAG dataset sampling operations."""
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
input_file: str,
|
| 27 |
+
required_fields: Optional[List[str]] = None,
|
| 28 |
+
use_cache: bool = True,
|
| 29 |
+
):
|
| 30 |
+
"""Initialize CragSampler.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
input_file: Path to input JSONL file (can be bz2 compressed)
|
| 34 |
+
required_fields: List of field names to extract. If None, uses default fields
|
| 35 |
+
use_cache: Whether to use/create cache file
|
| 36 |
+
"""
|
| 37 |
+
self.input_file = input_file
|
| 38 |
+
self.required_fields = required_fields or [
|
| 39 |
+
"domain",
|
| 40 |
+
"answer",
|
| 41 |
+
"question_type",
|
| 42 |
+
"static_or_dynamic",
|
| 43 |
+
]
|
| 44 |
+
self.use_cache = use_cache
|
| 45 |
+
self.df = self._load_data()
|
| 46 |
+
|
| 47 |
+
def _load_data(self) -> pd.DataFrame:
|
| 48 |
+
"""Load and process data from JSONL file."""
|
| 49 |
+
df = read_jsonl_fields_fast(
|
| 50 |
+
self.input_file, self.required_fields, self.use_cache
|
| 51 |
+
)
|
| 52 |
+
return process_answer_types(df)
|
| 53 |
+
|
| 54 |
+
def create_subsamples(
|
| 55 |
+
self,
|
| 56 |
+
n_subsamples: int = 5,
|
| 57 |
+
stratify_columns: Optional[List[str]] = None,
|
| 58 |
+
output_path: Optional[str] = None,
|
| 59 |
+
force_compute: bool = False,
|
| 60 |
+
) -> Dict:
|
| 61 |
+
"""Create stratified subsamples of the dataset.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
n_subsamples: Number of subsamples to create
|
| 65 |
+
stratify_columns: Columns to use for stratification. If None, uses defaults
|
| 66 |
+
output_path: Path to save/load the JSON output
|
| 67 |
+
force_compute: If True, always compute subsamples even if file exists
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
Dictionary containing the subsamples information
|
| 71 |
+
"""
|
| 72 |
+
if stratify_columns is None:
|
| 73 |
+
stratify_columns = [
|
| 74 |
+
"domain",
|
| 75 |
+
"answer_type",
|
| 76 |
+
"question_type",
|
| 77 |
+
"static_or_dynamic",
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
if output_path is None:
|
| 81 |
+
output_path = os.path.join(
|
| 82 |
+
os.path.dirname(self.input_file),
|
| 83 |
+
f"{os.path.splitext(os.path.basename(self.input_file))[0]}_subsamples.json",
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
return create_stratified_subsamples(
|
| 87 |
+
self.df,
|
| 88 |
+
n_subsamples=n_subsamples,
|
| 89 |
+
stratify_columns=stratify_columns,
|
| 90 |
+
output_path=output_path,
|
| 91 |
+
force_compute=force_compute,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def write_subsamples(
|
| 95 |
+
self,
|
| 96 |
+
subsamples_file: str,
|
| 97 |
+
output_dir: Optional[str] = None,
|
| 98 |
+
compress: bool = True,
|
| 99 |
+
n_processes: Optional[int] = None,
|
| 100 |
+
overwrite: bool = False,
|
| 101 |
+
) -> None:
|
| 102 |
+
"""Write subsamples to separate files.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
subsamples_file: Path to JSON file containing subsample indices
|
| 106 |
+
output_dir: Directory to save subsample files
|
| 107 |
+
compress: Whether to compress output files with bz2
|
| 108 |
+
n_processes: Number of processes to use
|
| 109 |
+
overwrite: If False, skip existing output files
|
| 110 |
+
"""
|
| 111 |
+
subsample_jsonl_file(
|
| 112 |
+
self.input_file,
|
| 113 |
+
subsamples_file,
|
| 114 |
+
output_dir=output_dir,
|
| 115 |
+
compress=compress,
|
| 116 |
+
n_processes=n_processes,
|
| 117 |
+
overwrite=overwrite,
|
| 118 |
+
)
|
crag_to_subsamples.py → crag_sampler/utils.py
RENAMED
|
@@ -1,17 +1,16 @@
|
|
| 1 |
-
import bz2
|
| 2 |
-
from typing import Iterator, Dict, Any
|
| 3 |
-
import pandas as pd
|
| 4 |
import os
|
| 5 |
import hashlib
|
|
|
|
| 6 |
import json
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
from multiprocessing import Pool, cpu_count
|
| 10 |
-
from
|
| 11 |
-
import subprocess
|
| 12 |
|
| 13 |
|
| 14 |
-
def get_cache_path(file_path: str, required_fields:
|
| 15 |
"""
|
| 16 |
Generate a unique cache file path based on input file and fields.
|
| 17 |
|
|
@@ -36,7 +35,7 @@ def get_cache_path(file_path: str, required_fields: list[str]) -> str:
|
|
| 36 |
|
| 37 |
|
| 38 |
def read_jsonl_fields_fast(
|
| 39 |
-
file_path: str, required_fields:
|
| 40 |
) -> pd.DataFrame:
|
| 41 |
"""
|
| 42 |
Quickly extract specific fields from a compressed JSONL file using string operations.
|
|
@@ -171,7 +170,7 @@ def process_answer_types(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 171 |
def create_stratified_subsamples(
|
| 172 |
df: pd.DataFrame,
|
| 173 |
n_subsamples: int,
|
| 174 |
-
stratify_columns:
|
| 175 |
"domain",
|
| 176 |
"answer_type",
|
| 177 |
"question_type",
|
|
@@ -179,7 +178,7 @@ def create_stratified_subsamples(
|
|
| 179 |
],
|
| 180 |
output_path: str = "subsamples.json",
|
| 181 |
force_compute: bool = False,
|
| 182 |
-
) ->
|
| 183 |
"""
|
| 184 |
Create stratified subsamples of the dataset and save them to a JSON file.
|
| 185 |
Each subsample gets a unique ID based on its indices.
|
|
@@ -270,7 +269,7 @@ def create_stratified_subsamples(
|
|
| 270 |
|
| 271 |
|
| 272 |
def write_subsample(
|
| 273 |
-
input_file: str, indices:
|
| 274 |
) -> None:
|
| 275 |
"""
|
| 276 |
Write a single subsample to a file using awk.
|
|
@@ -334,9 +333,9 @@ def write_subsample(
|
|
| 334 |
def subsample_jsonl_file(
|
| 335 |
input_file: str,
|
| 336 |
subsamples_file: str,
|
| 337 |
-
output_dir: str = None,
|
| 338 |
compress: bool = True,
|
| 339 |
-
n_processes: int = None,
|
| 340 |
overwrite: bool = False,
|
| 341 |
) -> None:
|
| 342 |
"""
|
|
@@ -395,52 +394,3 @@ def subsample_jsonl_file(
|
|
| 395 |
pool.starmap(write_subsample, write_args)
|
| 396 |
else:
|
| 397 |
print("No files to process - all files exist and overwrite=False")
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
def run_crag_task_1_and_2(
|
| 401 |
-
file_path: str,
|
| 402 |
-
fields_to_extract: list[str],
|
| 403 |
-
n_subsamples: int = 5,
|
| 404 |
-
output_dir: str = None,
|
| 405 |
-
compress: bool = True,
|
| 406 |
-
n_processes: int = None,
|
| 407 |
-
overwrite: bool = False,
|
| 408 |
-
):
|
| 409 |
-
# Load and process data
|
| 410 |
-
df = read_jsonl_fields_fast(file_path, fields_to_extract)
|
| 411 |
-
df = process_answer_types(df)
|
| 412 |
-
print(df.head())
|
| 413 |
-
|
| 414 |
-
output_path = os.path.join(
|
| 415 |
-
os.path.dirname(file_path),
|
| 416 |
-
os.path.basename(file_path).split(".")[0] + "_subsamples.json",
|
| 417 |
-
)
|
| 418 |
-
|
| 419 |
-
# This will load from file if it exists and parameters match
|
| 420 |
-
subsamples_data = create_stratified_subsamples(
|
| 421 |
-
df, n_subsamples=5, output_path=output_path
|
| 422 |
-
)
|
| 423 |
-
|
| 424 |
-
# Example of how to read and use the subsamples
|
| 425 |
-
with open(output_path, "r") as f:
|
| 426 |
-
subsamples_data = json.load(f)
|
| 427 |
-
|
| 428 |
-
# Print some information about the subsamples
|
| 429 |
-
print(f"Created {subsamples_data['metadata']['n_subsamples']} subsamples")
|
| 430 |
-
print("\nGlobal statistics:")
|
| 431 |
-
print(json.dumps(subsamples_data["metadata"]["global_statistics"], indent=2))
|
| 432 |
-
|
| 433 |
-
# Print statistics for first subsample
|
| 434 |
-
print("\nFirst subsample statistics:")
|
| 435 |
-
print(json.dumps(subsamples_data["subsamples"][0]["statistics"], indent=2))
|
| 436 |
-
|
| 437 |
-
# This will use all available CPU cores
|
| 438 |
-
subsample_jsonl_file(file_path, output_path, compress=True)
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
# Example usage
|
| 442 |
-
if __name__ == "__main__":
|
| 443 |
-
file_path = "./local_data/crag_task_1_and_2_dev_v4.jsonl.bz2"
|
| 444 |
-
fields_to_extract = ["domain", "answer", "question_type", "static_or_dynamic"]
|
| 445 |
-
|
| 446 |
-
run_crag_task_1_and_2(file_path, fields_to_extract)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import hashlib
|
| 3 |
+
import bz2
|
| 4 |
import json
|
| 5 |
+
import subprocess
|
| 6 |
+
from typing import Dict, List, Optional, Any
|
| 7 |
+
import pandas as pd
|
| 8 |
import numpy as np
|
| 9 |
from multiprocessing import Pool, cpu_count
|
| 10 |
+
from sklearn.model_selection import StratifiedKFold
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
+
def get_cache_path(file_path: str, required_fields: List[str]) -> str:
|
| 14 |
"""
|
| 15 |
Generate a unique cache file path based on input file and fields.
|
| 16 |
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
def read_jsonl_fields_fast(
|
| 38 |
+
file_path: str, required_fields: List[str], use_cache: bool = True
|
| 39 |
) -> pd.DataFrame:
|
| 40 |
"""
|
| 41 |
Quickly extract specific fields from a compressed JSONL file using string operations.
|
|
|
|
| 170 |
def create_stratified_subsamples(
|
| 171 |
df: pd.DataFrame,
|
| 172 |
n_subsamples: int,
|
| 173 |
+
stratify_columns: List[str] = [
|
| 174 |
"domain",
|
| 175 |
"answer_type",
|
| 176 |
"question_type",
|
|
|
|
| 178 |
],
|
| 179 |
output_path: str = "subsamples.json",
|
| 180 |
force_compute: bool = False,
|
| 181 |
+
) -> Dict[str, Any]:
|
| 182 |
"""
|
| 183 |
Create stratified subsamples of the dataset and save them to a JSON file.
|
| 184 |
Each subsample gets a unique ID based on its indices.
|
|
|
|
| 269 |
|
| 270 |
|
| 271 |
def write_subsample(
|
| 272 |
+
input_file: str, indices: List[int], output_file: str, compress: bool = True
|
| 273 |
) -> None:
|
| 274 |
"""
|
| 275 |
Write a single subsample to a file using awk.
|
|
|
|
| 333 |
def subsample_jsonl_file(
|
| 334 |
input_file: str,
|
| 335 |
subsamples_file: str,
|
| 336 |
+
output_dir: Optional[str] = None,
|
| 337 |
compress: bool = True,
|
| 338 |
+
n_processes: Optional[int] = None,
|
| 339 |
overwrite: bool = False,
|
| 340 |
) -> None:
|
| 341 |
"""
|
|
|
|
| 394 |
pool.starmap(write_subsample, write_args)
|
| 395 |
else:
|
| 396 |
print("No files to process - all files exist and overwrite=False")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/basic_sampling.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Example usage
|
| 2 |
+
from crag_sampler import CragSampler
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def run_crag_task_1_and_2(
|
| 8 |
+
file_path: str,
|
| 9 |
+
fields_to_extract: list[str] = None,
|
| 10 |
+
n_subsamples: int = 5,
|
| 11 |
+
output_dir: str = None,
|
| 12 |
+
compress: bool = True,
|
| 13 |
+
n_processes: int = None,
|
| 14 |
+
overwrite: bool = False,
|
| 15 |
+
):
|
| 16 |
+
"""Run the CRAG sampling pipeline for tasks 1 and 2.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
file_path: Path to input JSONL file
|
| 20 |
+
fields_to_extract: List of fields to extract from JSONL
|
| 21 |
+
n_subsamples: Number of subsamples to create
|
| 22 |
+
output_dir: Directory for output files
|
| 23 |
+
compress: Whether to compress output files
|
| 24 |
+
n_processes: Number of processes for parallel processing
|
| 25 |
+
overwrite: Whether to overwrite existing files
|
| 26 |
+
"""
|
| 27 |
+
# Initialize sampler
|
| 28 |
+
sampler = CragSampler(
|
| 29 |
+
input_file=file_path, required_fields=fields_to_extract, use_cache=True
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Create output path for subsamples
|
| 33 |
+
output_path = os.path.join(
|
| 34 |
+
os.path.dirname(file_path),
|
| 35 |
+
f"{os.path.splitext(os.path.basename(file_path))[0]}_subsamples.json",
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Create subsamples
|
| 39 |
+
subsamples_data = sampler.create_subsamples(
|
| 40 |
+
n_subsamples=n_subsamples, output_path=output_path
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Print statistics
|
| 44 |
+
print(f"Created {subsamples_data['metadata']['n_subsamples']} subsamples")
|
| 45 |
+
print("\nGlobal statistics:")
|
| 46 |
+
print(json.dumps(subsamples_data["metadata"]["global_statistics"], indent=2))
|
| 47 |
+
print("\nFirst subsample statistics:")
|
| 48 |
+
print(json.dumps(subsamples_data["subsamples"][0]["statistics"], indent=2))
|
| 49 |
+
|
| 50 |
+
# Write subsamples to files
|
| 51 |
+
sampler.write_subsamples(
|
| 52 |
+
subsamples_file=output_path,
|
| 53 |
+
output_dir=output_dir,
|
| 54 |
+
compress=compress,
|
| 55 |
+
n_processes=n_processes,
|
| 56 |
+
overwrite=overwrite,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Example usage
|
| 61 |
+
if __name__ == "__main__":
|
| 62 |
+
file_path = "./local_data/crag_task_1_and_2_dev_v4.jsonl.bz2"
|
| 63 |
+
fields_to_extract = ["domain", "answer", "question_type", "static_or_dynamic"]
|
| 64 |
+
|
| 65 |
+
run_crag_task_1_and_2(file_path, fields_to_extract)
|
pyproject.toml
DELETED
|
@@ -1,29 +0,0 @@
|
|
| 1 |
-
[project]
|
| 2 |
-
name = "lejuge"
|
| 3 |
-
version = "0.1.0"
|
| 4 |
-
description = "Add your description here"
|
| 5 |
-
authors = [
|
| 6 |
-
{ name = "Jacopo Chevallard", email = "[email protected]" }
|
| 7 |
-
]
|
| 8 |
-
dependencies = [
|
| 9 |
-
"ipykernel>=6.29.5",
|
| 10 |
-
"pandas>=2.2.3",
|
| 11 |
-
"fastparquet>=2024.11.0",
|
| 12 |
-
"scikit-learn>=1.6.1",
|
| 13 |
-
]
|
| 14 |
-
readme = "README.md"
|
| 15 |
-
requires-python = ">= 3.11"
|
| 16 |
-
|
| 17 |
-
[build-system]
|
| 18 |
-
requires = ["hatchling"]
|
| 19 |
-
build-backend = "hatchling.build"
|
| 20 |
-
|
| 21 |
-
[tool.rye]
|
| 22 |
-
managed = true
|
| 23 |
-
dev-dependencies = []
|
| 24 |
-
|
| 25 |
-
[tool.hatch.metadata]
|
| 26 |
-
allow-direct-references = true
|
| 27 |
-
|
| 28 |
-
[tool.hatch.build.targets.wheel]
|
| 29 |
-
packages = ["src/lejuge"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements-dev.lock
DELETED
|
@@ -1,109 +0,0 @@
|
|
| 1 |
-
# generated by rye
|
| 2 |
-
# use `rye lock` or `rye sync` to update this lockfile
|
| 3 |
-
#
|
| 4 |
-
# last locked with the following flags:
|
| 5 |
-
# pre: false
|
| 6 |
-
# features: []
|
| 7 |
-
# all-features: false
|
| 8 |
-
# with-sources: false
|
| 9 |
-
# generate-hashes: false
|
| 10 |
-
# universal: false
|
| 11 |
-
|
| 12 |
-
-e file:.
|
| 13 |
-
appnope==0.1.4
|
| 14 |
-
# via ipykernel
|
| 15 |
-
asttokens==3.0.0
|
| 16 |
-
# via stack-data
|
| 17 |
-
comm==0.2.2
|
| 18 |
-
# via ipykernel
|
| 19 |
-
cramjam==2.9.1
|
| 20 |
-
# via fastparquet
|
| 21 |
-
debugpy==1.8.12
|
| 22 |
-
# via ipykernel
|
| 23 |
-
decorator==5.1.1
|
| 24 |
-
# via ipython
|
| 25 |
-
executing==2.2.0
|
| 26 |
-
# via stack-data
|
| 27 |
-
fastparquet==2024.11.0
|
| 28 |
-
# via lejuge
|
| 29 |
-
fsspec==2024.12.0
|
| 30 |
-
# via fastparquet
|
| 31 |
-
ipykernel==6.29.5
|
| 32 |
-
# via lejuge
|
| 33 |
-
ipython==8.31.0
|
| 34 |
-
# via ipykernel
|
| 35 |
-
jedi==0.19.2
|
| 36 |
-
# via ipython
|
| 37 |
-
joblib==1.4.2
|
| 38 |
-
# via scikit-learn
|
| 39 |
-
jupyter-client==8.6.3
|
| 40 |
-
# via ipykernel
|
| 41 |
-
jupyter-core==5.7.2
|
| 42 |
-
# via ipykernel
|
| 43 |
-
# via jupyter-client
|
| 44 |
-
matplotlib-inline==0.1.7
|
| 45 |
-
# via ipykernel
|
| 46 |
-
# via ipython
|
| 47 |
-
nest-asyncio==1.6.0
|
| 48 |
-
# via ipykernel
|
| 49 |
-
numpy==2.2.2
|
| 50 |
-
# via fastparquet
|
| 51 |
-
# via pandas
|
| 52 |
-
# via scikit-learn
|
| 53 |
-
# via scipy
|
| 54 |
-
packaging==24.2
|
| 55 |
-
# via fastparquet
|
| 56 |
-
# via ipykernel
|
| 57 |
-
pandas==2.2.3
|
| 58 |
-
# via fastparquet
|
| 59 |
-
# via lejuge
|
| 60 |
-
parso==0.8.4
|
| 61 |
-
# via jedi
|
| 62 |
-
pexpect==4.9.0
|
| 63 |
-
# via ipython
|
| 64 |
-
platformdirs==4.3.6
|
| 65 |
-
# via jupyter-core
|
| 66 |
-
prompt-toolkit==3.0.50
|
| 67 |
-
# via ipython
|
| 68 |
-
psutil==6.1.1
|
| 69 |
-
# via ipykernel
|
| 70 |
-
ptyprocess==0.7.0
|
| 71 |
-
# via pexpect
|
| 72 |
-
pure-eval==0.2.3
|
| 73 |
-
# via stack-data
|
| 74 |
-
pygments==2.19.1
|
| 75 |
-
# via ipython
|
| 76 |
-
python-dateutil==2.9.0.post0
|
| 77 |
-
# via jupyter-client
|
| 78 |
-
# via pandas
|
| 79 |
-
pytz==2024.2
|
| 80 |
-
# via pandas
|
| 81 |
-
pyzmq==26.2.0
|
| 82 |
-
# via ipykernel
|
| 83 |
-
# via jupyter-client
|
| 84 |
-
scikit-learn==1.6.1
|
| 85 |
-
# via lejuge
|
| 86 |
-
scipy==1.15.1
|
| 87 |
-
# via scikit-learn
|
| 88 |
-
six==1.17.0
|
| 89 |
-
# via python-dateutil
|
| 90 |
-
stack-data==0.6.3
|
| 91 |
-
# via ipython
|
| 92 |
-
threadpoolctl==3.5.0
|
| 93 |
-
# via scikit-learn
|
| 94 |
-
tornado==6.4.2
|
| 95 |
-
# via ipykernel
|
| 96 |
-
# via jupyter-client
|
| 97 |
-
traitlets==5.14.3
|
| 98 |
-
# via comm
|
| 99 |
-
# via ipykernel
|
| 100 |
-
# via ipython
|
| 101 |
-
# via jupyter-client
|
| 102 |
-
# via jupyter-core
|
| 103 |
-
# via matplotlib-inline
|
| 104 |
-
typing-extensions==4.12.2
|
| 105 |
-
# via ipython
|
| 106 |
-
tzdata==2025.1
|
| 107 |
-
# via pandas
|
| 108 |
-
wcwidth==0.2.13
|
| 109 |
-
# via prompt-toolkit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.lock
DELETED
|
@@ -1,109 +0,0 @@
|
|
| 1 |
-
# generated by rye
|
| 2 |
-
# use `rye lock` or `rye sync` to update this lockfile
|
| 3 |
-
#
|
| 4 |
-
# last locked with the following flags:
|
| 5 |
-
# pre: false
|
| 6 |
-
# features: []
|
| 7 |
-
# all-features: false
|
| 8 |
-
# with-sources: false
|
| 9 |
-
# generate-hashes: false
|
| 10 |
-
# universal: false
|
| 11 |
-
|
| 12 |
-
-e file:.
|
| 13 |
-
appnope==0.1.4
|
| 14 |
-
# via ipykernel
|
| 15 |
-
asttokens==3.0.0
|
| 16 |
-
# via stack-data
|
| 17 |
-
comm==0.2.2
|
| 18 |
-
# via ipykernel
|
| 19 |
-
cramjam==2.9.1
|
| 20 |
-
# via fastparquet
|
| 21 |
-
debugpy==1.8.12
|
| 22 |
-
# via ipykernel
|
| 23 |
-
decorator==5.1.1
|
| 24 |
-
# via ipython
|
| 25 |
-
executing==2.2.0
|
| 26 |
-
# via stack-data
|
| 27 |
-
fastparquet==2024.11.0
|
| 28 |
-
# via lejuge
|
| 29 |
-
fsspec==2024.12.0
|
| 30 |
-
# via fastparquet
|
| 31 |
-
ipykernel==6.29.5
|
| 32 |
-
# via lejuge
|
| 33 |
-
ipython==8.31.0
|
| 34 |
-
# via ipykernel
|
| 35 |
-
jedi==0.19.2
|
| 36 |
-
# via ipython
|
| 37 |
-
joblib==1.4.2
|
| 38 |
-
# via scikit-learn
|
| 39 |
-
jupyter-client==8.6.3
|
| 40 |
-
# via ipykernel
|
| 41 |
-
jupyter-core==5.7.2
|
| 42 |
-
# via ipykernel
|
| 43 |
-
# via jupyter-client
|
| 44 |
-
matplotlib-inline==0.1.7
|
| 45 |
-
# via ipykernel
|
| 46 |
-
# via ipython
|
| 47 |
-
nest-asyncio==1.6.0
|
| 48 |
-
# via ipykernel
|
| 49 |
-
numpy==2.2.2
|
| 50 |
-
# via fastparquet
|
| 51 |
-
# via pandas
|
| 52 |
-
# via scikit-learn
|
| 53 |
-
# via scipy
|
| 54 |
-
packaging==24.2
|
| 55 |
-
# via fastparquet
|
| 56 |
-
# via ipykernel
|
| 57 |
-
pandas==2.2.3
|
| 58 |
-
# via fastparquet
|
| 59 |
-
# via lejuge
|
| 60 |
-
parso==0.8.4
|
| 61 |
-
# via jedi
|
| 62 |
-
pexpect==4.9.0
|
| 63 |
-
# via ipython
|
| 64 |
-
platformdirs==4.3.6
|
| 65 |
-
# via jupyter-core
|
| 66 |
-
prompt-toolkit==3.0.50
|
| 67 |
-
# via ipython
|
| 68 |
-
psutil==6.1.1
|
| 69 |
-
# via ipykernel
|
| 70 |
-
ptyprocess==0.7.0
|
| 71 |
-
# via pexpect
|
| 72 |
-
pure-eval==0.2.3
|
| 73 |
-
# via stack-data
|
| 74 |
-
pygments==2.19.1
|
| 75 |
-
# via ipython
|
| 76 |
-
python-dateutil==2.9.0.post0
|
| 77 |
-
# via jupyter-client
|
| 78 |
-
# via pandas
|
| 79 |
-
pytz==2024.2
|
| 80 |
-
# via pandas
|
| 81 |
-
pyzmq==26.2.0
|
| 82 |
-
# via ipykernel
|
| 83 |
-
# via jupyter-client
|
| 84 |
-
scikit-learn==1.6.1
|
| 85 |
-
# via lejuge
|
| 86 |
-
scipy==1.15.1
|
| 87 |
-
# via scikit-learn
|
| 88 |
-
six==1.17.0
|
| 89 |
-
# via python-dateutil
|
| 90 |
-
stack-data==0.6.3
|
| 91 |
-
# via ipython
|
| 92 |
-
threadpoolctl==3.5.0
|
| 93 |
-
# via scikit-learn
|
| 94 |
-
tornado==6.4.2
|
| 95 |
-
# via ipykernel
|
| 96 |
-
# via jupyter-client
|
| 97 |
-
traitlets==5.14.3
|
| 98 |
-
# via comm
|
| 99 |
-
# via ipykernel
|
| 100 |
-
# via ipython
|
| 101 |
-
# via jupyter-client
|
| 102 |
-
# via jupyter-core
|
| 103 |
-
# via matplotlib-inline
|
| 104 |
-
typing-extensions==4.12.2
|
| 105 |
-
# via ipython
|
| 106 |
-
tzdata==2025.1
|
| 107 |
-
# via pandas
|
| 108 |
-
wcwidth==0.2.13
|
| 109 |
-
# via prompt-toolkit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas>=1.0.0
|
| 2 |
+
scikit-learn>=0.24.0
|
| 3 |
+
fastparquet>=2024.11.0
|
setup.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from setuptools import setup, find_packages
|
| 2 |
+
|
| 3 |
+
setup(
|
| 4 |
+
name="crag-sampler",
|
| 5 |
+
version="0.1.0",
|
| 6 |
+
packages=find_packages(),
|
| 7 |
+
install_requires=["pandas>=1.0.0", "scikit-learn>=0.24.0"],
|
| 8 |
+
author="Jacopo Chevallard",
|
| 9 |
+
author_email="[email protected]",
|
| 10 |
+
description="A tool for sampling CRAG datasets",
|
| 11 |
+
long_description=open("README.md").read(),
|
| 12 |
+
long_description_content_type="text/markdown",
|
| 13 |
+
url="https://huggingface.co/Quivr/CRAG",
|
| 14 |
+
classifiers=[
|
| 15 |
+
"Programming Language :: Python :: 3",
|
| 16 |
+
"License :: OSI Approved :: MIT License",
|
| 17 |
+
"Operating System :: OS Independent",
|
| 18 |
+
],
|
| 19 |
+
python_requires=">=3.7",
|
| 20 |
+
)
|