Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,161 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: artistic-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- visual-grounding
|
| 5 |
+
- lidar
|
| 6 |
+
- 3d
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# 3EED: Ground Everything Everywhere in 3D — Dataset Card
|
| 10 |
+
|
| 11 |
+
A cross-platform, multi-modal 3D visual grounding dataset spanning **vehicle**, **drone**, and **quadruped** platforms, with synchronized **RGB**, **LiDAR**, and **language** annotations. This page documents how to obtain and organize the dataset from HuggingFace and how to connect it with the training/evaluation code in the 3EED repository.
|
| 12 |
+
|
| 13 |
+
- Project Page: https://3eed.github.io
|
| 14 |
+
- Code (Baselines & Evaluation): https://github.com/iris0329/3eed
|
| 15 |
+
- Paper: https://arxiv.org/ (coming soon)
|
| 16 |
+
|
| 17 |
+
## 1. What’s Included
|
| 18 |
+
|
| 19 |
+
- Platforms: `vehicle`, `drone`, `quad` (quadruped)
|
| 20 |
+
- Modalities: LiDAR point clouds, RGB images, language referring expressions, metadata
|
| 21 |
+
- Splits: train/val files per platform under `splits/`
|
| 22 |
+
- Task: 3D visual grounding (language → 3D box)
|
| 23 |
+
|
| 24 |
+
## 2. Download
|
| 25 |
+
|
| 26 |
+
You can download via:
|
| 27 |
+
- HuggingFace CLI:
|
| 28 |
+
```bash
|
| 29 |
+
pip install -U "huggingface_hub[cli]"
|
| 30 |
+
huggingface-cli download 3EED/3EED --repo-type dataset --local-dir ./3eed_dataset
|
| 31 |
+
````
|
| 32 |
+
|
| 33 |
+
- Python:
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from huggingface_hub import snapshot_download
|
| 37 |
+
snapshot_download(repo_id="3EED/3EED", repo_type="dataset", local_dir="./3eed_dataset")
|
| 38 |
+
```
|
| 39 |
+
- Git (LFS):
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
git lfs install
|
| 43 |
+
git clone https://huggingface.co/datasets/3EED/3EED 3eed_dataset
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## 3. Directory Structure
|
| 47 |
+
|
| 48 |
+
- Place or verify the files under `data/3eed/` in your project. A minimal expected layout (paths shown relative to the repo root):
|
| 49 |
+
|
| 50 |
+
```
|
| 51 |
+
data/3eed/
|
| 52 |
+
├── drone/ # Drone platform data
|
| 53 |
+
│ ├── scene-0001/
|
| 54 |
+
│ │ ├── 0000_0/
|
| 55 |
+
│ │ │ ├── image.jpg
|
| 56 |
+
│ │ │ ├── lidar.bin
|
| 57 |
+
│ │ │ └── meta_info.json
|
| 58 |
+
│ │ └── ...
|
| 59 |
+
│ └── ...
|
| 60 |
+
├── quad/ # Quadruped platform data
|
| 61 |
+
│ ├── scene-0001/
|
| 62 |
+
│ └── ...
|
| 63 |
+
├── waymo/ # Vehicle platform data
|
| 64 |
+
│ ├── scene-0001/
|
| 65 |
+
│ └── ...
|
| 66 |
+
└── splits/ # Train/val split files
|
| 67 |
+
├── drone_train.txt
|
| 68 |
+
├── drone_val.txt
|
| 69 |
+
├── quad_train.txt
|
| 70 |
+
├── quad_val.txt
|
| 71 |
+
├── waymo_train.txt
|
| 72 |
+
└── waymo_val.txt
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
## 4. Connect to the Codebase
|
| 77 |
+
|
| 78 |
+
- Clone the code repository:
|
| 79 |
+
|
| 80 |
+
```bash
|
| 81 |
+
git clone https://github.com/iris0329/3eed
|
| 82 |
+
cd 3eed
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
- Link or copy the downloaded dataset to `data/3eed/`:
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
# Example: if your dataset is in ../3eed_dataset
|
| 89 |
+
ln -s ../3eed_dataset data/3eed
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
Now you can follow the **Installation**, **Custom CUDA Operators**, **Training**, and **Evaluation** sections in the GitHub README:
|
| 93 |
+
|
| 94 |
+
* Train on all platforms:
|
| 95 |
+
|
| 96 |
+
```bash
|
| 97 |
+
bash scripts/train_3eed.sh
|
| 98 |
+
```
|
| 99 |
+
* Train on a single platform:
|
| 100 |
+
|
| 101 |
+
```bash
|
| 102 |
+
bash scripts/train_waymo.sh # vehicle
|
| 103 |
+
bash scripts/train_drone.sh # drone
|
| 104 |
+
bash scripts/train_quad.sh # quadruped
|
| 105 |
+
```
|
| 106 |
+
* Evaluate:
|
| 107 |
+
|
| 108 |
+
```bash
|
| 109 |
+
bash scripts/val_3eed.sh
|
| 110 |
+
bash scripts/val_waymo.sh
|
| 111 |
+
bash scripts/val_drone.sh
|
| 112 |
+
bash scripts/val_quad.sh
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
Remember to set the correct `--checkpoint_path` inside the evaluation scripts.
|
| 116 |
+
|
| 117 |
+
## 5. Data Splits
|
| 118 |
+
|
| 119 |
+
We provide official splits under `data/3eed/splits/`:
|
| 120 |
+
|
| 121 |
+
* `*_train.txt`: training scene/frame indices for each platform
|
| 122 |
+
* `*_val.txt`: validation scene/frame indices for each platform
|
| 123 |
+
|
| 124 |
+
Please keep these files unchanged for fair comparison with the baselines and reported results.
|
| 125 |
+
|
| 126 |
+
## 6. Usage Tips
|
| 127 |
+
|
| 128 |
+
* Storage: LiDAR+RGB data can be large; ensure sufficient disk space and use Git LFS for partial sync if needed.
|
| 129 |
+
* IO Throughput: For faster training/evaluation, place frequently used scenes on fast local SSDs or use caching.
|
| 130 |
+
* Reproducibility: Use the exact environment files and scripts from the code repo; platform unions vs. single-platform runs are controlled by the provided scripts.
|
| 131 |
+
|
| 132 |
+
## 7. License
|
| 133 |
+
|
| 134 |
+
* Dataset license: **Apache-2.0** (see the header of this page).
|
| 135 |
+
* The **code repository** uses **Apache-2.0**; refer to the LICENSE in the GitHub repo.
|
| 136 |
+
|
| 137 |
+
If you plan to use, redistribute, or modify the dataset, please review the dataset license and any upstream source licenses (e.g., Waymo Open Dataset, M3ED).
|
| 138 |
+
|
| 139 |
+
## 8. Citation
|
| 140 |
+
|
| 141 |
+
- If you find 3EED helpful, please cite:
|
| 142 |
+
```bibtex
|
| 143 |
+
@inproceedings{li2025_3eed,
|
| 144 |
+
title = {3EED: Ground Everything Everywhere in 3D},
|
| 145 |
+
author = {Rong Li and Yuhao Dong and Tianshuai Hu and Ao Liang and
|
| 146 |
+
Youquan Liu and Dongyue Lu and Liang Pan and Lingdong Kong and
|
| 147 |
+
Junwei Liang and Ziwei Liu},
|
| 148 |
+
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)
|
| 149 |
+
Datasets and Benchmarks Track},
|
| 150 |
+
year = {2025}
|
| 151 |
+
}
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## 9. Acknowledgements
|
| 155 |
+
|
| 156 |
+
We acknowledge the following upstream sources which make this dataset possible:
|
| 157 |
+
|
| 158 |
+
* Waymo Open Dataset (vehicle platform)
|
| 159 |
+
* M3ED (drone and quadruped platforms)
|
| 160 |
+
|
| 161 |
+
For baseline implementations and evaluation code, please refer to the GitHub repository.
|