SkyWhal3 commited on
Commit
ac17552
·
verified ·
1 Parent(s): f3e2a6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -22
README.md CHANGED
@@ -152,7 +152,7 @@ _Main split for Hugging Face: JSONL format (see above for statistics)._
152
  "sci_fields": {},
153
  "incl_fields": {}
154
  }
155
-
156
 
157
 
158
  ===================================================================================================================
@@ -163,9 +163,8 @@ The Hugging Face infrastructure will automatically use the efficient Parquet fil
163
  ### Install dependencies (if needed):
164
 
165
  ```bash
166
- pip install datasets```
167
-
168
-
169
 
170
  ## Load the full dataset (Parquet, recommended)
171
 
@@ -175,9 +174,8 @@ pip install datasets```
175
  ds = load_dataset("SkyWhal3/ClinVar-STXBP1-NLP-Dataset")
176
 
177
  # Access examples
178
- print(ds["train"][0])```
179
-
180
-
181
 
182
  ## To force JSONL loading (if you prefer the original format):
183
 
@@ -189,8 +187,8 @@ ds = load_dataset(
189
  data_files="ClinVar-STXBP1-NLP-Dataset.jsonl",
190
  split="train"
191
  )
192
- print(ds[0])```
193
-
194
 
195
  ## Other ways to use the data
196
  Load all Parquet shards with pandas
@@ -202,29 +200,29 @@ import glob
202
  parquet_files = glob.glob("default/train/*.parquet")
203
  df = pd.concat([pd.read_parquet(pq) for pq in parquet_files], ignore_index=True)
204
  print(df.shape)
205
- print(df.head())```
206
-
207
 
208
  ## Filter for a gene (e.g., STXBP1)
209
 
210
  ```df = pd.read_parquet("default/train/0000.parquet")
211
  stxbp1_df = df[df["gene"] == "STXBP1"]
212
- print(stxbp1_df.head())```
213
-
214
 
215
  ## Randomly sample a subset
216
 
217
  ```sample = df.sample(n=5, random_state=42)
218
- print(sample)```
219
-
220
 
221
  ## Load with Polars (for high performance)
222
 
223
  ```import polars as pl
224
 
225
  df = pl.read_parquet("default/train/0000.parquet")
226
- print(df.head())```
227
-
228
 
229
  ## Query with DuckDB (SQL-style)
230
 
@@ -232,12 +230,12 @@ print(df.head())```
232
 
233
  con = duckdb.connect()
234
  df = con.execute("SELECT * FROM 'default/train/0000.parquet' WHERE gene='STXBP1' LIMIT 5").df()
235
- print(df)```
236
-
237
-
238
- ```## Streaming mode with 🤗 Datasets
239
 
 
240
 
241
  ds = load_dataset("SkyWhal3/ClinVar-STXBP1-NLP-Dataset", split="train", streaming=True)
242
  for record in ds.take(5):
243
- print(record)```
 
 
152
  "sci_fields": {},
153
  "incl_fields": {}
154
  }
155
+ ```
156
 
157
 
158
  ===================================================================================================================
 
163
  ### Install dependencies (if needed):
164
 
165
  ```bash
166
+ pip install datasets
167
+ ```
 
168
 
169
  ## Load the full dataset (Parquet, recommended)
170
 
 
174
  ds = load_dataset("SkyWhal3/ClinVar-STXBP1-NLP-Dataset")
175
 
176
  # Access examples
177
+ print(ds["train"][0])
178
+ ```
 
179
 
180
  ## To force JSONL loading (if you prefer the original format):
181
 
 
187
  data_files="ClinVar-STXBP1-NLP-Dataset.jsonl",
188
  split="train"
189
  )
190
+ print(ds[0])
191
+ ```
192
 
193
  ## Other ways to use the data
194
  Load all Parquet shards with pandas
 
200
  parquet_files = glob.glob("default/train/*.parquet")
201
  df = pd.concat([pd.read_parquet(pq) for pq in parquet_files], ignore_index=True)
202
  print(df.shape)
203
+ print(df.head())
204
+ ```
205
 
206
  ## Filter for a gene (e.g., STXBP1)
207
 
208
  ```df = pd.read_parquet("default/train/0000.parquet")
209
  stxbp1_df = df[df["gene"] == "STXBP1"]
210
+ print(stxbp1_df.head())
211
+ ```
212
 
213
  ## Randomly sample a subset
214
 
215
  ```sample = df.sample(n=5, random_state=42)
216
+ print(sample)
217
+ ```
218
 
219
  ## Load with Polars (for high performance)
220
 
221
  ```import polars as pl
222
 
223
  df = pl.read_parquet("default/train/0000.parquet")
224
+ print(df.head())
225
+ ```
226
 
227
  ## Query with DuckDB (SQL-style)
228
 
 
230
 
231
  con = duckdb.connect()
232
  df = con.execute("SELECT * FROM 'default/train/0000.parquet' WHERE gene='STXBP1' LIMIT 5").df()
233
+ print(df)
234
+ ```
 
 
235
 
236
+ ## Streaming mode with 🤗 Datasets
237
 
238
  ds = load_dataset("SkyWhal3/ClinVar-STXBP1-NLP-Dataset", split="train", streaming=True)
239
  for record in ds.take(5):
240
+ print(record)
241
+ ```