Datasets:
File size: 1,847 Bytes
ed7257e 90e6366 601ec45 98fc8df 90e6366 fdc5880 ed7257e 2e60018 009869e 2e60018 499b2bd 009869e 2e60018 acbcbca 2e60018 acbcbca 2e60018 a70e1d0 ed7257e fd8d1a6 a70e1d0 fd8d1a6 a70e1d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-nc-sa-2.0
task_categories:
- text-to-speech
- audio-to-audio
- automatic-speech-recognition
language:
- en
- zh
tags:
- code-switch
- english
- chinese
- cross-lingual
pretty_name: NovaLingua
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 24000
- name: speaker_id
dtype: int64
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 7975869553.0
num_examples: 15000
download_size: 7716781499
dataset_size: 7975869553.0
---
# LinguaNova : massive multilingual dataset with double and triple code switching
LinguaNova-en-zh is a subpart of __LinguaNova__.
__LinguaNova-en-zh__ only supports Mandarin, English and double code-switch (en ; zh / zh ; en).
<div align="center"><img width="400px" src="https://play-lh.googleusercontent.com/Y0lZddPVEp827mMb48DZVj9A7QEXT1aoB_6Uuai5T8WEE26kuyceF5dLkTYA94PQ_Hk=w480-h960" alt="English chinese illustration" /></div>
## Key points of __LinguaNova__ :
- supports enough languages to cover 50% of the world's native speakers (not to mention second languages).
- double code-switch; triple code-switch
- High speech quality (dnsmos >= 3.0 ), artifact-free. Ideal for TTS.
- Wide variety of speakers.
- Many of the speeches are emotive and annotated.
## ☕ Support and Contact
If you find this dataset useful and would like to support my work, you can do it via Ko-fi:
<p align="center">
<a href="https://ko-fi.com/thomcles" target="_blank" rel="noopener noreferrer">
<img src="https://storage.ko-fi.com/cdn/kofi3.png?v=3" alt="Buy Me a Coffee at ko-fi.com" width="200" rel="noopener noreferrer"/>
</a>
</p>
Custom dataset or accessing Nova-Lingua or somethin similar ?
e-mail : [email protected]
|