WiserZhou nielsr HF Staff commited on
Commit
be4fa5c
·
verified ·
1 Parent(s): 82bb9ae

Add comprehensive dataset card for MTID dataset (#1)

Browse files

- Add comprehensive dataset card for MTID dataset (d28eafb1ca3c9649d50ab45194802d38408381a3)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - video-text-to-text
4
+ language:
5
+ - en
6
+ license: cc-by-nc-4.0
7
+ tags:
8
+ - instructional-videos
9
+ - procedure-planning
10
+ - diffusion-models
11
+ ---
12
+
13
+ # Masked Temporal Interpolation Diffusion (MTID) Dataset for Procedure Planning
14
+
15
+ This repository contains the datasets used in the paper [Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos](https://huggingface.co/papers/2507.03393).
16
+
17
+ The **MTID** (Masked Temporal Interpolation Diffusion) model addresses the challenge of procedure planning in instructional videos. It aims to generate coherent and task-aligned action sequences from start and end visual observations by leveraging a latent space temporal interpolation module to augment visual supervision with richer mid-state details. This dataset facilitates research and development in this area by providing necessary data for training and evaluating such models.
18
+
19
+ The code for the MTID model is available at: [https://github.com/WiserZhou/MTID](https://github.com/WiserZhou/MTID)
20
+
21
+ ## Data Preparation
22
+
23
+ This dataset includes data for three widely used benchmark datasets: CrossTask, COIN, and NIV.
24
+
25
+ To download datasets and features, navigate to the respective dataset directory and run the download script as shown in the original repository:
26
+
27
+ ```bash
28
+ cd ./dataset/{dataset_name}
29
+ bash download.sh
30
+ ```
31
+
32
+ Replace `{dataset_name}` with `crosstask`, `coin`, or `NIV`.
33
+
34
+ Alternatively, you can find the datasets within this Hugging Face repository itself.
35
+
36
+ ## Citation
37
+
38
+ If you find this dataset or the associated paper useful in your research, please cite:
39
+
40
+ ```bibtex
41
+ @inproceedings{
42
+ zhou2025masked,
43
+ title={Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos},
44
+ author={Yufan Zhou and Zhaobo Qi and Lingshuai Lin and Junqi Jing and Tingting Chai and Beichen Zhang and Shuhui Wang and Weigang Zhang},
45
+ booktitle={ICLR},
46
+ year={2025},
47
+ }
48
+ ```