id
int64
1
500
prompt
stringlengths
2.71k
11.3k
ground-truth rule
stringlengths
61
230
validation program
stringlengths
903
9.15k
level
int64
1
10
num_houses
int64
2
10
num_rooms
int64
2
4
rule_length
int64
1
4
kappa_positive
int64
1
5
kappa_negative
int64
1
5
1
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, flat). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, vegetable).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, flat). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4).
1
2
2
1
1
1
2
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, herb).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 3).
1
2
2
1
1
1
3
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 1).
1
2
2
1
1
1
4
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, flat). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, herb).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, flat). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 3).
1
2
2
1
1
1
5
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 3).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 2).
1
2
2
1
1
1
6
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 4).
1
2
2
1
1
1
7
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, gabled).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 4).
1
2
2
1
1
1
8
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, bay).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2).
1
2
2
1
1
1
9
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 3).
1
2
2
1
1
1
10
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, flat).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3).
1
2
2
1
1
1
11
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 0). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 0).
1
2
2
1
1
1
12
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, gabled).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 1).
1
2
2
1
1
1
13
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4).
1
2
2
1
1
1
14
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 0).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 4).
1
2
2
1
1
1
15
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 3).
1
2
2
1
1
1
16
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, sliding). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, white).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, sliding). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 2).
1
2
2
1
1
1
17
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 3).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 2).
1
2
2
1
1
1
18
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, vegetable).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 4).
1
2
2
1
1
1
19
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, flat).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 4).
1
2
2
1
1
1
20
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room4_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 1).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room4_2, 4).
1
2
2
1
1
1
21
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3).
1
2
2
1
1
1
22
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, herb).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 3).
1
2
2
1
1
1
23
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room4_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 1).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room4_2, 4).
1
2
2
1
1
1
24
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 3).
1
2
2
1
1
1
25
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room3_3, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 1).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room3_3, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 2).
1
2
2
1
1
1
26
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, gabled). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, detached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, gabled). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 1).
1
2
2
1
1
1
27
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, flower).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1).
1
2
2
1
1
1
28
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, sliding). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 0). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, flower).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, sliding). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 0).
1
2
2
1
1
1
29
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, blue).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 3).
1
2
2
1
1
1
30
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_1, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 2).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_1, 1).
1
2
2
1
1
1
31
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room3_3, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 1).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room3_3, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 3).
1
2
2
1
1
1
32
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, detached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2).
1
2
2
1
1
1
33
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 4).
1
2
2
1
1
1
34
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, flat).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 2).
1
2
2
1
1
1
35
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, blue).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2).
1
2
2
1
1
1
36
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, vegetable).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 1).
1
2
2
1
1
1
37
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, vegetable).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 1).
1
2
2
1
1
1
38
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, bay).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 3).
1
2
2
1
1
1
39
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 1).
1
2
2
1
1
1
40
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 2).
1
2
2
1
1
1
41
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, yellow).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4).
1
2
2
1
1
1
42
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, sliding). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 1).
1
2
2
1
1
1
43
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, flat). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, flat). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, sliding).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, flat). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, flat). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4).
1
2
2
1
1
1
44
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, flower).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1).
1
2
2
1
1
1
45
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 1).
1
2
2
1
1
1
46
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, hipped). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, hipped). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 4).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, hipped). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, hipped). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3).
1
2
2
1
1
1
47
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, bay).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 1).
1
2
2
1
1
1
48
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, yellow).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1).
1
2
2
1
1
1
49
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, flat). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room3_2, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 1).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, flat). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room3_2, 3).
1
2
2
1
1
1
50
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room1_1, room1_2. - 'room_num(Room, Room_number)': Room_number can be 1, 2. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, flat). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, flat). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, detached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, flat). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, flat). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 1).
1
2
2
1
1
1
51
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, none). has_garden(room0_3, flower). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, none). has_garden(room1_3, flower). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, casement).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, none). has_garden(room0_3, flower). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, none). has_garden(room1_3, flower). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 4).
2
2
3
1
1
1
52
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, hipped). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, herb). has_garage(room1_3, detached). has_window(room1_3, none). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, hipped).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, hipped). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, herb). has_garage(room1_3, detached). has_window(room1_3, none). window_num(room1_3, 3).
2
2
3
1
1
1
53
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, hipped). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, hipped). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, white).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, hipped). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, hipped). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 3).
2
2
3
1
1
1
54
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, none). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, sliding).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, none). window_num(room1_3, 3).
2
2
3
1
1
1
55
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, flat). has_garden(room1_3, none). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, gabled).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, flat). has_garden(room1_3, none). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
56
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_4, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, none). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 2).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_4, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, none). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 3).
2
2
3
1
1
1
57
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, detached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 4).
2
2
3
1
1
1
58
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, casement).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
59
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, flat). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, flat). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 2).
2
2
3
1
1
1
60
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, hipped). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, hipped).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, hipped). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 3).
2
2
3
1
1
1
61
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, hipped).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 2).
2
2
3
1
1
1
62
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, hipped). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 1).
2
2
3
1
1
1
63
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, gabled). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, gabled). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, gabled). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, gabled). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
64
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, none). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 0).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, flat). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, flat). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, none). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 4).
2
2
3
1
1
1
65
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, none). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, gabled).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, none). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, none). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 2).
2
2
3
1
1
1
66
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, casement).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
67
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, vegetable).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
68
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 3).
2
2
3
1
1
1
69
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, herb).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 3).
2
2
3
1
1
1
70
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, sliding).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, none). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
71
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 0).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 4).
2
2
3
1
1
1
72
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, bay). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, flower).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, bay). window_num(room1_3, 2).
2
2
3
1
1
1
73
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, flat). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, flat). has_garden(room1_3, vegetable). has_garage(room1_3, none). has_window(room1_3, none). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, casement).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, flat). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, none). has_window(room1_2, bay). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, flat). has_garden(room1_3, vegetable). has_garage(room1_3, none). has_window(room1_3, none). window_num(room1_3, 1).
2
2
3
1
1
1
74
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 0). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 2).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, attached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, attached). has_window(room1_2, none). window_num(room1_2, 0). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 3).
2
2
3
1
1
1
75
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 2).
2
2
3
1
1
1
76
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 4).
2
2
3
1
1
1
77
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, casement). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, casement). window_num(room1_3, 1).
2
2
3
1
1
1
78
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, blue).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, flat). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
79
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, sliding).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 3).
2
2
3
1
1
1
80
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, none). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, detached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, red). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, none). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
81
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, hipped). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, hipped). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
82
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, none). window_num(room1_3, 0). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, bay).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 0). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, none). window_num(room1_3, 0).
2
2
3
1
1
1
83
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 2).
2
2
3
1
1
1
84
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, hipped). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, none). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, hipped).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, hipped). has_garden(room0_3, herb). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, bay). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, none). has_garden(room1_3, herb). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 3).
2
2
3
1
1
1
85
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, none). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, none). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 1).
2
2
3
1
1
1
86
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, hipped). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, hipped). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, blue). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 0). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, gabled). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, hipped). has_garden(room0_3, vegetable). has_garage(room0_3, attached). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, flower). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 0). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, gabled). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, hipped). has_garden(room1_3, vegetable). has_garage(room1_3, attached). has_window(room1_3, none). window_num(room1_3, 1).
2
2
3
1
1
1
87
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, gabled).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, bay). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, bay). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, hipped). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, detached). has_window(room1_1, bay). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, bay). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, hipped). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 1).
2
2
3
1
1
1
88
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_wall_color(Room1, red).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, red). has_roof_type(room0_1, gabled). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, none). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, yellow). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, blue). has_roof_type(room1_1, gabled). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, none). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, yellow). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
89
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 0). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, hipped). has_garden(room0_1, none). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 0). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 0). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
90
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, casement). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, casement). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 4).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, attached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, casement). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, flat). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, attached). has_window(room1_2, sliding). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, casement). window_num(room1_3, 3).
2
2
3
1
1
1
91
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_roof_type(Room1, flat).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, flat). has_garden(room0_1, none). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 3). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, flat). has_garden(room0_3, herb). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, hipped). has_garden(room1_1, none). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, hipped). has_garden(room1_3, herb). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
92
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, flat). has_garden(room0_3, none). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, flat). has_garden(room1_3, none). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, flower).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, casement). window_num(room0_1, 2). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, none). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, none). window_num(room0_2, 2). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, flat). has_garden(room0_3, none). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, attached). has_window(room1_1, casement). window_num(room1_1, 2). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, none). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, none). window_num(room1_2, 2). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, flat). has_garden(room1_3, none). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 4).
2
2
3
1
1
1
93
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, herb). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, none). has_garden(room1_3, herb). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, flower).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, flower). has_garage(room0_1, detached). has_window(room0_1, casement). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, red). has_roof_type(room0_2, gabled). has_garden(room0_2, none). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, blue). has_roof_type(room0_3, none). has_garden(room0_3, herb). has_garage(room0_3, detached). has_window(room0_3, bay). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, casement). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, red). has_roof_type(room1_2, gabled). has_garden(room1_2, none). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, blue). has_roof_type(room1_3, none). has_garden(room1_3, herb). has_garage(room1_3, detached). has_window(room1_3, bay). window_num(room1_3, 1).
2
2
3
1
1
1
94
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, none). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 4).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, gabled). has_garden(room0_1, none). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, yellow). has_roof_type(room0_2, hipped). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, none). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, gabled). has_garden(room1_1, none). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, yellow). has_roof_type(room1_2, hipped). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 3). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, none). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 2).
2
2
3
1
1
1
95
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, flat). has_garden(room0_3, none). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, flat). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, flat). has_garden(room1_3, none). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garden(Room1, herb).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, attached). has_window(room0_1, bay). window_num(room0_1, 4). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, flat). has_garden(room0_3, none). has_garage(room0_3, attached). has_window(room0_3, casement). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, flat). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, flat). has_garden(room1_3, none). has_garage(room1_3, attached). has_window(room1_3, casement). window_num(room1_3, 1).
2
2
3
1
1
1
96
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 2). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), window_num(Room1, 3).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, none). has_garden(room0_1, herb). has_garage(room0_1, none). has_window(room0_1, bay). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, white). has_roof_type(room0_2, none). has_garden(room0_2, vegetable). has_garage(room0_2, none). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, white). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, none). has_window(room0_3, bay). window_num(room0_3, 2). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, none). has_garden(room1_1, herb). has_garage(room1_1, none). has_window(room1_1, bay). window_num(room1_1, 4). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, white). has_roof_type(room1_2, none). has_garden(room1_2, vegetable). has_garage(room1_2, none). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, white). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, none). has_window(room1_3, bay). window_num(room1_3, 2).
2
2
3
1
1
1
97
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 3). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, bay).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, hipped). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, sliding). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, hipped). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, bay). window_num(room0_2, 1). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, none). has_window(room0_3, sliding). window_num(room0_3, 3). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, hipped). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, sliding). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, hipped). has_garden(room1_2, flower). has_garage(room1_2, attached). has_window(room1_2, casement). window_num(room1_2, 1). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, none). has_window(room1_3, sliding). window_num(room1_3, 3).
2
2
3
1
1
1
98
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 4). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, white). has_roof_type(room0_1, none). has_garden(room0_1, vegetable). has_garage(room0_1, none). has_window(room0_1, none). window_num(room0_1, 3). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, flower). has_garage(room0_2, attached). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, gabled). has_garden(room0_3, vegetable). has_garage(room0_3, detached). has_window(room0_3, sliding). window_num(room0_3, 4). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, white). has_roof_type(room1_1, none). has_garden(room1_1, vegetable). has_garage(room1_1, none). has_window(room1_1, none). window_num(room1_1, 3). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, flower). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, gabled). has_garden(room1_3, vegetable). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 4).
2
2
3
1
1
1
99
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, casement). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_window(Room1, none).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, yellow). has_roof_type(room0_1, none). has_garden(room0_1, flower). has_garage(room0_1, attached). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, blue). has_roof_type(room0_2, flat). has_garden(room0_2, herb). has_garage(room0_2, detached). has_window(room0_2, sliding). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, green). has_roof_type(room0_3, gabled). has_garden(room0_3, flower). has_garage(room0_3, detached). has_window(room0_3, none). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, yellow). has_roof_type(room1_1, none). has_garden(room1_1, flower). has_garage(room1_1, attached). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, blue). has_roof_type(room1_2, flat). has_garden(room1_2, herb). has_garage(room1_2, detached). has_window(room1_2, sliding). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, green). has_roof_type(room1_3, gabled). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, casement). window_num(room1_3, 1).
2
2
3
1
1
1
100
You are a classifier for a logical reasoning task. Each House is composed of one or more Rooms, and each Room is characterized by a set of properties, represented as ground atoms over a fixed set of predicates. The label (modern or traditional) of a House is to be determined from its composition. To describe the Houses we define a set of predicates and grounding domains: - 'has_room(House, Room)': Room can be room0_1, room0_2, room0_3, room1_1, room1_2, room1_3. - 'room_num(Room, Room_number)': Room_number can be 1, 2, 3. - 'has_wall_color(Room, Color)': Color can be red, blue, green, yellow, white. - 'has_roof_type(Room, Roof_type)': Roof_type can be flat, gabled, hipped, none. - 'has_garden(Room, Garden_type)': Garden_type can be flower, vegetable, herb, none. - 'has_garage(Room, Garage_type)': Garage_type can be attached, detached, none. - 'has_window(Room, Window_type)': Window_type can be bay, casement, sliding, none. - 'window_num(Room, Number_of_windows)': Number_of_windows can be 0, 1, 2, 3, 4. You are provided with positive and negative examples in the form of modern(t) or traditional(t) for each House t, together with background knowledge consisting of ground facts over the above predicates which describe its composition. modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 1). Your task is to formulate a hypothesis in form of a prolog rule of the form 'modern(T) :- Body.' that correctly distinguishes modern from traditional Houses. The hypothesis must be true for all positive examples (i.e., Houses labeled as modern) and false for all negative examples (i.e., Houses labeled as traditional). Aim to find the shortest correct rule, that is, one that uses the fewest possible body literals without loss of conditions. Your rule must use only the predicates defined in the grammar above and must perfectly separate modern from traditional Houses.
modern(House):- has_room(House, Room1), has_garage(Room1, attached).
modern(house0). has_room(house0, room0_1). room_num(room0_1, 1). has_wall_color(room0_1, green). has_roof_type(room0_1, gabled). has_garden(room0_1, vegetable). has_garage(room0_1, detached). has_window(room0_1, sliding). window_num(room0_1, 1). has_room(house0, room0_2). room_num(room0_2, 2). has_wall_color(room0_2, green). has_roof_type(room0_2, none). has_garden(room0_2, none). has_garage(room0_2, detached). has_window(room0_2, casement). window_num(room0_2, 4). has_room(house0, room0_3). room_num(room0_3, 3). has_wall_color(room0_3, red). has_roof_type(room0_3, flat). has_garden(room0_3, flower). has_garage(room0_3, attached). has_window(room0_3, sliding). window_num(room0_3, 1). traditional(house1). has_room(house1, room1_1). room_num(room1_1, 1). has_wall_color(room1_1, green). has_roof_type(room1_1, gabled). has_garden(room1_1, vegetable). has_garage(room1_1, detached). has_window(room1_1, sliding). window_num(room1_1, 1). has_room(house1, room1_2). room_num(room1_2, 2). has_wall_color(room1_2, green). has_roof_type(room1_2, none). has_garden(room1_2, none). has_garage(room1_2, detached). has_window(room1_2, casement). window_num(room1_2, 4). has_room(house1, room1_3). room_num(room1_3, 3). has_wall_color(room1_3, red). has_roof_type(room1_3, flat). has_garden(room1_3, flower). has_garage(room1_3, detached). has_window(room1_3, sliding). window_num(room1_3, 1).
2
2
3
1
1
1