Datasets:
ArXiv:
License:
File size: 2,700 Bytes
03b32a4 3e95017 03b32a4 e198308 96a4181 e198308 96a4181 e198308 03b32a4 e6acfc4 03b32a4 362e010 03b32a4 362e010 03b32a4 362e010 03b32a4 86d9b06 362e010 86d9b06 03b32a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: mit
---
The dataset used to train and evaluate [ReT](https://www.arxiv.org/abs/2503.01980) for multimodal information retrieval. The dataset is almost the same as the original [M2KR](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR), with a few modifications:
- we exlude any data from MSMARCO, as it does not contain query images;
- we add passage images to OVEN, InfoSeek, E-VQA, and OKVQA. Refer to the paper for more details.
## Sources
<!-- - **Repository:** https://github.com/aimagelab/ReT
- **Paper:** [Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval](https://www.arxiv.org/abs/2503.01980) (CVPR 2025) -->
[](https://www.arxiv.org/abs/2503.01980)
[](https://github.com/aimagelab/ReT)
**! Update 12/09/2025**<br>
We have just released ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval<br>
[](https://arxiv.org/abs/2509.08897)
[](https://github.com/aimagelab/ReT-2)
## Download images
1. Initialize git LFS
```
git lfs install
```
2. Clone the repository (it will take a lot)
```
git clone https://huggingface.co/datasets/aimagelab/ReT-M2KR
cd ReT-M2KR
```
3. Decompress images (it will take a lot, again)
```
# M2KR images
cd images/m2kr
cat ret-img-{000..129}.tar.gz | tar xzf -
# Encyclopedi-VQA knowledge base images
cd ../images/evqa_kb
cat evqa-kb-img-{00000..00241}.tar.gz | tar xzf -
```
## RAG - InfoSeek
`jsonl/rag/kb_infoseek525k.jsonl` is the knowledge base used to execute experiments on Retrieval-Augmented Generation on the InfoSeek benchmark. The field `passage_image_path` contains a relative path to the Wikipedia image associated with a given passage. The Wikipedia images can be downloaded from the [OVEN](https://huggingface.co/datasets/ychenNLP/oven/blob/main/all_wikipedia_images.tar) repository.
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@inproceedings{caffagni2025recurrence,
title={{Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval}},
author={Caffagni, Davide and Sarto, Sara and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2025}
}
``` |