Datasets:

ArXiv:
License:
File size: 2,700 Bytes
03b32a4
 
 
 
3e95017
03b32a4
 
 
 
 
e198308
 
96a4181
e198308
 
 
 
 
96a4181
e198308
03b32a4
 
e6acfc4
03b32a4
 
 
 
 
 
 
 
362e010
03b32a4
 
 
 
362e010
 
03b32a4
362e010
 
 
 
03b32a4
 
86d9b06
 
362e010
86d9b06
03b32a4
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: mit
---

The dataset used to train and evaluate [ReT](https://www.arxiv.org/abs/2503.01980) for multimodal information retrieval. The dataset is almost the same as the original [M2KR](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR), with a few modifications:
- we exlude any data from MSMARCO, as it does not contain query images;
- we add passage images to OVEN, InfoSeek, E-VQA, and OKVQA. Refer to the paper for more details.


## Sources
<!-- - **Repository:** https://github.com/aimagelab/ReT
- **Paper:** [Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval](https://www.arxiv.org/abs/2503.01980) (CVPR 2025) -->
[![ReT](https://img.shields.io/badge/ReT-arxiv.2503.15621-B31B1B.svg)](https://www.arxiv.org/abs/2503.01980)
[![Code](https://img.shields.io/badge/Code-181717?logo=github&logoColor=white)](https://github.com/aimagelab/ReT)


**! Update 12/09/2025**<br>
We have just released ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval<br>
[![ReT-2](https://img.shields.io/badge/ReT--2-arxiv.2509.08897-B31B1B.svg)](https://arxiv.org/abs/2509.08897)
[![Code](https://img.shields.io/badge/Code-181717?logo=github&logoColor=white)](https://github.com/aimagelab/ReT-2)


## Download images
1. Initialize git LFS
```
git lfs install
```

2. Clone the repository (it will take a lot)
```
git clone https://huggingface.co/datasets/aimagelab/ReT-M2KR
cd ReT-M2KR
```

3. Decompress images (it will take a lot, again)
```
# M2KR images
cd images/m2kr
cat ret-img-{000..129}.tar.gz | tar xzf -

# Encyclopedi-VQA knowledge base images
cd ../images/evqa_kb
cat evqa-kb-img-{00000..00241}.tar.gz | tar xzf -
```


## RAG - InfoSeek
`jsonl/rag/kb_infoseek525k.jsonl` is the knowledge base used to execute experiments on Retrieval-Augmented Generation on the InfoSeek benchmark. The field `passage_image_path` contains a relative path to the Wikipedia image  associated with a given passage. The Wikipedia images can be downloaded from the [OVEN](https://huggingface.co/datasets/ychenNLP/oven/blob/main/all_wikipedia_images.tar) repository.  

## Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```
@inproceedings{caffagni2025recurrence,
  title={{Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval}},
  author={Caffagni, Davide and Sarto, Sara and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2025}
}
```