--- license: mit --- The dataset used to train and evaluate [ReT](https://www.arxiv.org/abs/2503.01980) for multimodal information retrieval. The dataset is almost the same as the original [M2KR](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR), with a few modifications: - we exlude any data from MSMARCO, as it does not contain query images; - we add passage images to OVEN, InfoSeek, E-VQA, and OKVQA. Refer to the paper for more details. ## Sources [![ReT](https://img.shields.io/badge/ReT-arxiv.2503.15621-B31B1B.svg)](https://www.arxiv.org/abs/2503.01980) [![Code](https://img.shields.io/badge/Code-181717?logo=github&logoColor=white)](https://github.com/aimagelab/ReT) **! Update 12/09/2025**
We have just released ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval
[![ReT-2](https://img.shields.io/badge/ReT--2-arxiv.2509.08897-B31B1B.svg)](https://arxiv.org/abs/2509.08897) [![Code](https://img.shields.io/badge/Code-181717?logo=github&logoColor=white)](https://github.com/aimagelab/ReT-2) ## Download images 1. Initialize git LFS ``` git lfs install ``` 2. Clone the repository (it will take a lot) ``` git clone https://huggingface.co/datasets/aimagelab/ReT-M2KR cd ReT-M2KR ``` 3. Decompress images (it will take a lot, again) ``` # M2KR images cd images/m2kr cat ret-img-{000..129}.tar.gz | tar xzf - # Encyclopedi-VQA knowledge base images cd ../images/evqa_kb cat evqa-kb-img-{00000..00241}.tar.gz | tar xzf - ``` ## RAG - InfoSeek `jsonl/rag/kb_infoseek525k.jsonl` is the knowledge base used to execute experiments on Retrieval-Augmented Generation on the InfoSeek benchmark. The field `passage_image_path` contains a relative path to the Wikipedia image associated with a given passage. The Wikipedia images can be downloaded from the [OVEN](https://huggingface.co/datasets/ychenNLP/oven/blob/main/all_wikipedia_images.tar) repository. ## Citation **BibTeX:** ``` @inproceedings{caffagni2025recurrence, title={{Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval}}, author={Caffagni, Davide and Sarto, Sara and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, year={2025} } ```