---
license: mit
---
The dataset used to train and evaluate [ReT](https://www.arxiv.org/abs/2503.01980) for multimodal information retrieval. The dataset is almost the same as the original [M2KR](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR), with a few modifications:
- we exlude any data from MSMARCO, as it does not contain query images;
- we add passage images to OVEN, InfoSeek, E-VQA, and OKVQA. Refer to the paper for more details.
## Sources
[](https://www.arxiv.org/abs/2503.01980)
[](https://github.com/aimagelab/ReT)
**! Update 12/09/2025**
We have just released ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval
[](https://arxiv.org/abs/2509.08897)
[](https://github.com/aimagelab/ReT-2)
## Download images
1. Initialize git LFS
```
git lfs install
```
2. Clone the repository (it will take a lot)
```
git clone https://huggingface.co/datasets/aimagelab/ReT-M2KR
cd ReT-M2KR
```
3. Decompress images (it will take a lot, again)
```
# M2KR images
cd images/m2kr
cat ret-img-{000..129}.tar.gz | tar xzf -
# Encyclopedi-VQA knowledge base images
cd ../images/evqa_kb
cat evqa-kb-img-{00000..00241}.tar.gz | tar xzf -
```
## RAG - InfoSeek
`jsonl/rag/kb_infoseek525k.jsonl` is the knowledge base used to execute experiments on Retrieval-Augmented Generation on the InfoSeek benchmark. The field `passage_image_path` contains a relative path to the Wikipedia image associated with a given passage. The Wikipedia images can be downloaded from the [OVEN](https://huggingface.co/datasets/ychenNLP/oven/blob/main/all_wikipedia_images.tar) repository.
## Citation
**BibTeX:**
```
@inproceedings{caffagni2025recurrence,
title={{Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval}},
author={Caffagni, Davide and Sarto, Sara and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2025}
}
```