Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
David Wadden commited on
Commit
a8997fc
·
1 Parent(s): b825ec1

Update the README.

Browse files
Files changed (2) hide show
  1. README.md +131 -49
  2. card.md +109 -48
README.md CHANGED
@@ -135,7 +135,28 @@ size_categories:
135
  ---
136
  # SciRIFF
137
 
138
- The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
  ## License
141
 
@@ -143,52 +164,113 @@ SciRIFF is licensed under `ODC-By`.
143
 
144
  ## Task provenance
145
 
146
- SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
148
- | SciRIFF Name | Paper Link | License | Website / Download Link |
149
- | :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- |
150
- | `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> |
151
- | `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> |
152
- | `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> |
153
- | `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> |
154
- | `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> |
155
- | `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> |
156
- | `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> |
157
- | `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> |
158
- | `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> |
159
- | `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> |
160
- | `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> |
161
- | `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> |
162
- | `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> |
163
- | `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> |
164
- | `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> |
165
- | `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> |
166
- | `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> |
167
- | `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> |
168
- | `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> |
169
- | `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> |
170
- | `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> |
171
- | `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> |
172
- | `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> |
173
- | `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> |
174
- | `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> |
175
- | `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> |
176
- | `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> |
177
- | `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> |
178
- | `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> |
179
- | `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> |
180
- | `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> |
181
- | `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> |
182
- | `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> |
183
- | `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> |
184
- | `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> |
185
- | `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> |
186
- | `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> |
187
- | `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> |
188
- | `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> |
189
- | `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> |
190
- | `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> |
191
- | `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> |
192
- | `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> |
193
- | `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> |
194
- | `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> |
 
 
 
 
 
 
 
 
 
 
135
  ---
136
  # SciRIFF
137
 
138
+ The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper [SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature](link.todo).
139
+
140
+ There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:
141
+
142
+ ```python
143
+ import datasets
144
+ ds = datasets.load_dataset("allenai/SciRIFF", "4096")
145
+ ```
146
+
147
+ ## Dataset details
148
+
149
+ Each instance in SciRIFF has the following fields:
150
+
151
+ - `input`: Task input (i.e. user message).
152
+ - `output`: Task output (i.e. expected model response).
153
+ - `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
154
+ - `metadata`: Metadata on the task that this particular demonstration is an instance of. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
155
+ - `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
156
+ - `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
157
+ - `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
158
+ - `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
159
+ - `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
160
 
161
  ## License
162
 
 
164
 
165
  ## Task provenance
166
 
167
+ SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the excellent [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks included in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
168
+
169
+ | SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
170
+ | :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
171
+ | `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> | |
172
+ | `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> | `anat_em` |
173
+ | `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> | |
174
+ | `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> | `bc7_litcovid` |
175
+ | `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> | `bioasq` |
176
+ | `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> | `biored` |
177
+ | `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> | `bc5cdr` |
178
+ | `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> | `chemdner` |
179
+ | `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot` |
180
+ | `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> | |
181
+ | `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> | |
182
+ | `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> | `chia` |
183
+ | `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> | `covid_qa_deepset` |
184
+ | `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> | |
185
+ | `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> | |
186
+ | `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> | |
187
+ | `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> | `ddi_corpus` |
188
+ | `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> | |
189
+ | `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> | |
190
+ | `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> | |
191
+ | `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> | `jnlpba` |
192
+ | `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> | `gnormplus` |
193
+ | `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> | |
194
+ | `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> | `linnaeus` |
195
+ | `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> | `medmentions` |
196
+ | `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> | |
197
+ | `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
198
+ | `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
199
+ | `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> | |
200
+ | `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> | |
201
+ | `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> | |
202
+ | `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> | `ncbi_disease` |
203
+ | `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> | `nlmchem` |
204
+ | `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> | `nlm_gene` |
205
+ | `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> | `pico_extraction` |
206
+ | `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> | `pubmed_qa` |
207
+ | `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> | |
208
+ | `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> | |
209
+ | `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> | |
210
+ | `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> | |
211
+ | `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> | |
212
+ | `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> | |
213
+ | `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> | |
214
+ | `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> | |
215
+ | `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> | |
216
+
217
+ ## Task metadata
218
+
219
+ Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
220
 
221
+ | SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
222
+ | :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
223
+ | `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
224
+ | `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
225
+ | `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
226
+ | `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
227
+ | `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
228
+ | `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
229
+ | `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
230
+ | `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
231
+ | `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
232
+ | `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
233
+ | `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
234
+ | `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
235
+ | `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
236
+ | `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
237
+ | `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
238
+ | `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
239
+ | `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
240
+ | `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
241
+ | `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
242
+ | `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
243
+ | `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
244
+ | `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
245
+ | `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
246
+ | `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
247
+ | `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
248
+ | `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
249
+ | `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
250
+ | `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
251
+ | `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
252
+ | `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
253
+ | `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
254
+ | `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
255
+ | `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
256
+ | `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
257
+ | `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
258
+ | `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
259
+ | `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
260
+ | `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
261
+ | `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
262
+ | `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
263
+ | `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
264
+ | `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
265
+ | `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
266
+ | `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
267
+ | `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
268
+ | `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
269
+ | `scientific_lay_summarisation_`<br>`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
270
+ | `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
271
+ | `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
272
+ | `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
273
+ | `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
274
+ | `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
275
+ | `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
276
+ | `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |
card.md CHANGED
@@ -17,11 +17,11 @@ Each instance in SciRIFF has the following fields:
17
  - `output`: Task output (i.e. expected model response).
18
  - `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
19
  - `metadata`: Metadata on the task that this particular demonstration is an instance of. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
 
20
  - `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
21
  - `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
22
  - `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
23
  - `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
24
- - `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
25
 
26
  ## License
27
 
@@ -31,50 +31,111 @@ SciRIFF is licensed under `ODC-By`.
31
 
32
  SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the excellent [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks included in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
33
 
34
- | SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
35
- | :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :-------------|
36
- | `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> |
37
- | `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> |
38
- | `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> |
39
- | `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> |
40
- | `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> |
41
- | `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> |
42
- | `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> |
43
- | `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> |
44
- | `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> |
45
- | `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> |
46
- | `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> |
47
- | `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> |
48
- | `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> |
49
- | `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> |
50
- | `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> |
51
- | `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> |
52
- | `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> |
53
- | `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> |
54
- | `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> |
55
- | `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> |
56
- | `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> |
57
- | `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> |
58
- | `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> |
59
- | `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> |
60
- | `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> |
61
- | `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> |
62
- | `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> |
63
- | `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> |
64
- | `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> |
65
- | `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> |
66
- | `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> |
67
- | `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> |
68
- | `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> |
69
- | `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> |
70
- | `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> |
71
- | `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> |
72
- | `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> |
73
- | `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> |
74
- | `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> |
75
- | `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> |
76
- | `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> |
77
- | `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> |
78
- | `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> |
79
- | `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> |
80
- | `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  - `output`: Task output (i.e. expected model response).
18
  - `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
19
  - `metadata`: Metadata on the task that this particular demonstration is an instance of. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
20
+ - `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
21
  - `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
22
  - `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
23
  - `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
24
  - `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.
 
25
 
26
  ## License
27
 
 
31
 
32
  SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the excellent [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks included in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.
33
 
34
+ | SciRIFF Name | Paper Link | License | Website / Download Link | BigBio Subset |
35
+ | :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
36
+ | `acl_arc_intent_classification` | [ACL ARC](https://aclanthology.org/L08-1005/) | - | <https://github.com/allenai/scicite/> | |
37
+ | `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | <https://nactem.ac.uk/anatomytagger/#AnatEM> | `anat_em` |
38
+ | `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | <https://github.com/olivettigroup/annotated-materials-syntheses> | |
39
+ | `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/> | `bc7_litcovid` |
40
+ | `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | <http://bioasq.org/> | `bioasq` |
41
+ | `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/> | `biored` |
42
+ | `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/> | `bc5cdr` |
43
+ | `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/> | `chemdner` |
44
+ | `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot` |
45
+ | `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | <https://github.com/griff4692/calibrating-summaries> | |
46
+ | `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | <https://huggingface.co/datasets/fbaigt/schema-to-json> | |
47
+ | `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | <https://github.com/WengLab-InformaticsResearch/CHIA> | `chia` |
48
+ | `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA> | `covid_qa_deepset` |
49
+ | `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | <https://github.com/asaakyan/covidfact> | |
50
+ | `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem> | |
51
+ | `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main> | |
52
+ | `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | <https://github.com/isegura/DDICorpus> | `ddi_corpus` |
53
+ | `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | <https://github.com/M3RG-IITD/DiSCoMaT> | |
54
+ | `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | <https://github.com/allenai/drug-combo-extraction> | |
55
+ | `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | <https://evidence-inference.ebm-nlp.com/> | |
56
+ | `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | <https://github.com/spyysalo/jnlpba> | `jnlpba` |
57
+ | `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/> | `gnormplus` |
58
+ | `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | <https://github.com/sarrouti/healthver> | |
59
+ | `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | <https://sourceforge.net/projects/linnaeus/> | `linnaeus` |
60
+ | `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | <https://github.com/chanzuckerberg/MedMentions> | `medmentions` |
61
+ | `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | <https://github.com/paperswithcode/axcell> | |
62
+ | `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
63
+ | `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | <https://github.com/allenai/mslr-shared-task> | |
64
+ | `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | <https://github.com/allenai/multicite> | |
65
+ | `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | <https://github.com/yaolu/Multi-XScience> | |
66
+ | `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | <https://github.com/allenai/mup> | |
67
+ | `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/> | `ncbi_disease` |
68
+ | `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/> | `nlmchem` |
69
+ | `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/> | `nlm_gene` |
70
+ | `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | <https://github.com/bepnye/EBM-NLP> | `pico_extraction` |
71
+ | `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | <https://github.com/pubmedqa/pubmedqa> | `pubmed_qa` |
72
+ | `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | <https://github.com/lgresearch/QASA> | |
73
+ | `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | <https://allenai.org/data/qasper> | |
74
+ | `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | <https://allenai.org/data/scicite> | |
75
+ | `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation> | |
76
+ | `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | <https://huggingface.co/datasets/armanc/scientific_papers> | |
77
+ | `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | <http://nlp.cs.washington.edu/sciIE/> | |
78
+ | `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | <https://allenai.org/data/scifact> | |
79
+ | `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | <https://github.com/tetsu9923/SciReviewGen> | |
80
+ | `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | <https://github.com/allenai/scitldr> | |
81
+
82
+ ## Task metadata
83
+
84
+ Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
85
+
86
+ | SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
87
+ | :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
88
+ | `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
89
+ | `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
90
+ | `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
91
+ | `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
92
+ | `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
93
+ | `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
94
+ | `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
95
+ | `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
96
+ | `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
97
+ | `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
98
+ | `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
99
+ | `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
100
+ | `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
101
+ | `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
102
+ | `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
103
+ | `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
104
+ | `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
105
+ | `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
106
+ | `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
107
+ | `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
108
+ | `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
109
+ | `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
110
+ | `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
111
+ | `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
112
+ | `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
113
+ | `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
114
+ | `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
115
+ | `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
116
+ | `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
117
+ | `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
118
+ | `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
119
+ | `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
120
+ | `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
121
+ | `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
122
+ | `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
123
+ | `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
124
+ | `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
125
+ | `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
126
+ | `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
127
+ | `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
128
+ | `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
129
+ | `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
130
+ | `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
131
+ | `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
132
+ | `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
133
+ | `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
134
+ | `scientific_lay_summarisation_`<br>`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
135
+ | `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
136
+ | `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
137
+ | `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
138
+ | `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
139
+ | `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
140
+ | `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
141
+ | `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |