Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
1K - 10K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Qasper: A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers.""" | |
| import json | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @inproceedings{Dasigi2021ADO, | |
| title={A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers}, | |
| author={Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner}, | |
| year={2021} | |
| } | |
| """ | |
| _LICENSE = "CC BY 4.0" | |
| _DESCRIPTION = """\ | |
| A dataset containing 1585 papers with 5049 information-seeking questions asked by regular readers of NLP papers, and answered by a separate set of NLP practitioners. | |
| """ | |
| _HOMEPAGE = "https://allenai.org/data/qasper" | |
| _URL_TRAIN_DEV = "https://qasper-dataset.s3.us-west-2.amazonaws.com/qasper-train-dev-v0.3.tgz" | |
| _URL_TEST = "https://qasper-dataset.s3.us-west-2.amazonaws.com/qasper-test-and-evaluator-v0.3.tgz" | |
| _DATA_FILES = {"train": "qasper-train-v0.3.json", | |
| "dev": "qasper-dev-v0.3.json", | |
| "test": "qasper-test-v0.3.json"} | |
| _VERSION = "0.3.0" | |
| class Qasper(datasets.GeneratorBasedBuilder): | |
| """Qasper: A Dataset of Information-Seeking Q&A Anchored in Research Papers.""" | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="qasper", | |
| version=datasets.Version(_VERSION), | |
| description=_DESCRIPTION, | |
| ) | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "title": datasets.Value("string"), | |
| "abstract": datasets.Value("string"), | |
| "full_text": datasets.features.Sequence( | |
| { | |
| "section_name": datasets.Value("string"), | |
| "paragraphs": [datasets.Value("string")], | |
| } | |
| ), | |
| "qas": datasets.features.Sequence( | |
| { | |
| "question": datasets.Value("string"), | |
| "question_id": datasets.Value("string"), | |
| "nlp_background": datasets.Value("string"), | |
| "topic_background": datasets.Value("string"), | |
| "paper_read": datasets.Value("string"), | |
| "search_query": datasets.Value("string"), | |
| "question_writer": datasets.Value("string"), | |
| "answers": datasets.features.Sequence( | |
| { | |
| "answer": { | |
| "unanswerable": datasets.Value("bool"), | |
| "extractive_spans": datasets.features.Sequence(datasets.Value("string")), | |
| "yes_no": datasets.Value("bool"), | |
| "free_form_answer": datasets.Value("string"), | |
| "evidence": datasets.features.Sequence(datasets.Value("string")), | |
| "highlighted_evidence": datasets.features.Sequence(datasets.Value("string")), | |
| }, | |
| "annotation_id": datasets.Value("string"), | |
| "worker_id": datasets.Value("string"), | |
| } | |
| ), | |
| } | |
| ), | |
| "figures_and_tables": datasets.features.Sequence( | |
| { | |
| "caption": datasets.Value("string"), | |
| "file": datasets.Value("string"), | |
| } | |
| ), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| archive_train_dev, archive_test = dl_manager.download(( | |
| _URL_TRAIN_DEV, _URL_TEST) | |
| ) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": _DATA_FILES["train"], | |
| "files": dl_manager.iter_archive(archive_train_dev)}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": _DATA_FILES["dev"], | |
| "files": dl_manager.iter_archive(archive_train_dev)}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": _DATA_FILES["test"], | |
| "files": dl_manager.iter_archive(archive_test)}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, files): | |
| """This function returns the examples in the raw (text) form.""" | |
| logger.info("generating examples from = %s", filepath) | |
| for path, f in files: | |
| if path == filepath: | |
| qasper = json.loads(f.read().decode("utf-8")) | |
| for id_ in qasper: | |
| qasper[id_]["id"] = id_ | |
| yield id_, qasper[id_] | |
| break | |