Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
04c3d42
1
Parent(s):
c7ea11f
Delete loading script
Browse files
sciq.py
DELETED
|
@@ -1,91 +0,0 @@
|
|
| 1 |
-
"""TODO(sciQ): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
import datasets
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# TODO(sciQ): BibTeX citation
|
| 11 |
-
_CITATION = """\
|
| 12 |
-
@inproceedings{SciQ,
|
| 13 |
-
title={Crowdsourcing Multiple Choice Science Questions},
|
| 14 |
-
author={Johannes Welbl, Nelson F. Liu, Matt Gardner},
|
| 15 |
-
year={2017},
|
| 16 |
-
journal={arXiv:1707.06209v1}
|
| 17 |
-
}
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
# TODO(sciQ):
|
| 21 |
-
_DESCRIPTION = """\
|
| 22 |
-
The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided.
|
| 23 |
-
|
| 24 |
-
"""
|
| 25 |
-
_URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/SciQ.zip"
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class Sciq(datasets.GeneratorBasedBuilder):
|
| 29 |
-
"""TODO(sciQ): Short description of my dataset."""
|
| 30 |
-
|
| 31 |
-
# TODO(sciQ): Set up version.
|
| 32 |
-
VERSION = datasets.Version("0.1.0")
|
| 33 |
-
|
| 34 |
-
def _info(self):
|
| 35 |
-
# TODO(sciQ): Specifies the datasets.DatasetInfo object
|
| 36 |
-
return datasets.DatasetInfo(
|
| 37 |
-
# This is the description that will appear on the datasets page.
|
| 38 |
-
description=_DESCRIPTION,
|
| 39 |
-
# datasets.features.FeatureConnectors
|
| 40 |
-
features=datasets.Features(
|
| 41 |
-
{
|
| 42 |
-
# These are the features of your dataset like images, labels ...
|
| 43 |
-
"question": datasets.Value("string"),
|
| 44 |
-
"distractor3": datasets.Value("string"),
|
| 45 |
-
"distractor1": datasets.Value("string"),
|
| 46 |
-
"distractor2": datasets.Value("string"),
|
| 47 |
-
"correct_answer": datasets.Value("string"),
|
| 48 |
-
"support": datasets.Value("string"),
|
| 49 |
-
}
|
| 50 |
-
),
|
| 51 |
-
# If there's a common (input, target) tuple from the features,
|
| 52 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 53 |
-
# builder.as_dataset.
|
| 54 |
-
supervised_keys=None,
|
| 55 |
-
# Homepage of the dataset for documentation
|
| 56 |
-
homepage="https://allenai.org/data/sciq",
|
| 57 |
-
citation=_CITATION,
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
def _split_generators(self, dl_manager):
|
| 61 |
-
"""Returns SplitGenerators."""
|
| 62 |
-
# TODO(sciQ): Downloads the data and defines the splits
|
| 63 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 64 |
-
# download and extract URLs
|
| 65 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
| 66 |
-
data_dir = os.path.join(dl_dir, "SciQ dataset-2 3")
|
| 67 |
-
return [
|
| 68 |
-
datasets.SplitGenerator(
|
| 69 |
-
name=datasets.Split.TRAIN,
|
| 70 |
-
# These kwargs will be passed to _generate_examples
|
| 71 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "train.json")},
|
| 72 |
-
),
|
| 73 |
-
datasets.SplitGenerator(
|
| 74 |
-
name=datasets.Split.VALIDATION,
|
| 75 |
-
# These kwargs will be passed to _generate_examples
|
| 76 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "valid.json")},
|
| 77 |
-
),
|
| 78 |
-
datasets.SplitGenerator(
|
| 79 |
-
name=datasets.Split.TEST,
|
| 80 |
-
# These kwargs will be passed to _generate_examples
|
| 81 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "test.json")},
|
| 82 |
-
),
|
| 83 |
-
]
|
| 84 |
-
|
| 85 |
-
def _generate_examples(self, filepath):
|
| 86 |
-
"""Yields examples."""
|
| 87 |
-
# TODO(sciQ): Yields (key, example) tuples from the dataset
|
| 88 |
-
with open(filepath, encoding="utf-8") as f:
|
| 89 |
-
data = json.load(f)
|
| 90 |
-
for id_, row in enumerate(data):
|
| 91 |
-
yield id_, row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|