--- tags: - computer-vision - audio - keypoint-detection - animal-behavior - multi-modal - jsonl dataset_info: features: - name: bird_id dtype: string - name: back_bbox_2d sequence: float64 - name: back_keypoints_2d sequence: float64 - name: back_view_boundary sequence: int64 - name: bird_name dtype: string - name: video_name dtype: string - name: frame_name dtype: string - name: frame_path dtype: image - name: keypoints_3d sequence: sequence: float64 - name: radio_path dtype: binary - name: reprojection_error sequence: float64 - name: side_bbox_2d sequence: float64 - name: side_keypoints_2d sequence: float64 - name: side_view_boundary sequence: int64 - name: backpack_color dtype: string - name: experiment_id dtype: string - name: split dtype: string - name: top_bbox_2d sequence: float64 - name: top_keypoints_2d sequence: float64 - name: top_view_boundary sequence: int64 - name: video_path dtype: video - name: acc_ch_map struct: - name: '0' dtype: string - name: '1' dtype: string - name: '2' dtype: string - name: '3' dtype: string - name: '4' dtype: string - name: '5' dtype: string - name: '6' dtype: string - name: '7' dtype: string - name: acc_sr dtype: float64 - name: has_overlap dtype: bool - name: mic_ch_map struct: - name: '0' dtype: string - name: '1' dtype: string - name: '2' dtype: string - name: '3' dtype: string - name: '4' dtype: string - name: '5' dtype: string - name: '6' dtype: string - name: mic_sr dtype: float64 - name: acc_path dtype: audio - name: mic_path dtype: audio - name: vocalization list: - name: overlap_type dtype: string - name: has_bird dtype: bool - name: 2ddistance dtype: bool - name: small_2ddistance dtype: float64 - name: voc_metadata sequence: float64 splits: - name: train num_bytes: 74517864701.0153 num_examples: 6804 - name: val num_bytes: 32619282428.19056 num_examples: 2916 - name: test num_bytes: 38018415640.55813 num_examples: 3431 download_size: 35456328366 dataset_size: 145155562769.764 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* --- # Bird3M Dataset ## Dataset Description **Bird3M** is the first synchronized, multi-modal, multi-individual dataset designed for comprehensive behavioral analysis of freely interacting birds, specifically zebra finches, in naturalistic settings. It addresses the critical need for benchmark datasets that integrate precisely synchronized multi-modal recordings to support tasks such as 3D pose estimation, multi-animal tracking, sound source localization, and vocalization attribution. The dataset facilitates research in machine learning, neuroscience, and ethology by enabling the development of robust, unified models for long-term tracking and interpretation of complex social behaviors. ### Purpose Bird3M bridges the gap in publicly available datasets for multi-modal animal behavior analysis by providing: 1. A benchmark for unified machine learning models tackling multiple behavioral tasks. 2. A platform for exploring efficient multi-modal information fusion. 3. A resource for ethological studies linking movement, vocalization, and social context to uncover neural and evolutionary mechanisms. ## Dataset Structure The dataset is organized into three splits: `train`, `val`, and `test`, each as a Hugging Face `Dataset` object. Each row corresponds to a single bird instance in a video frame, with associated multi-modal data. ### Accessing Splits ```python from datasets import load_dataset dataset = load_dataset("anonymous-submission000/bird3m") train_dataset = dataset["train"] val_dataset = dataset["val"] test_dataset = dataset["test"] ``` ## Dataset Fields Each example includes the following fields: - **`bird_id`** (`string`): Unique identifier for the bird instance (e.g., "bird_1"). - **`back_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the back view, format `[x_min, y_min, x_max, y_max]`. - **`back_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the back view, format `[x1, y1, v1, x2, y2, v2, ...]`, where `v` is visibility (0: not labeled, 1: labeled but invisible, 2: visible). - **`back_view_boundary`** (`Sequence[int64]`): Back view boundary, format `[x, y, width, height]`. - **`bird_name`** (`string`): Biological identifier (e.g., "b13k20_f"). - **`video_name`** (`string`): Video file identifier (e.g., "BP_2020-10-13_19-44-38_564726_0240000"). - **`frame_name`** (`string`): Frame filename (e.g., "img00961.png"). - **`frame_path`** (`Image`): Path to the frame image (`.png`), loaded as a PIL Image. - **`keypoints_3d`** (`Sequence[Sequence[float64]]`): 3D keypoints, format `[[x1, y1, z1], [x2, y2, z2], ...]`. - **`radio_path`** (`binary`): Path to radio data (`.npz`), stored as binary. - **`reprojection_error`** (`Sequence[float64]`): Reprojection errors for 3D keypoints. - **`side_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the side view. - **`side_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the side view. - **`side_view_boundary`** (`Sequence[int64]`): Side view boundary. - **`backpack_color`** (`string`): Backpack tag color (e.g., "purple"). - **`experiment_id`** (`string`): Experiment identifier (e.g., "CopExpBP03"). - **`split`** (`string`): Dataset split ("train", "val", "test"). - **`top_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the top view. - **`top_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the top view. - **`top_view_boundary`** (`Sequence[int64]`): Top view boundary. - **`video_path`** (`Video`): Path to the video clip (`.mp4`), loaded as a Video object. - **`acc_ch_map`** (`struct`): Maps accelerometer channels to bird identifiers. - **`acc_sr`** (`float64`): Accelerometer sampling rate (Hz). - **`has_overlap`** (`bool`): Indicates if accelerometer events overlap with vocalizations. - **`mic_ch_map`** (`struct`): Maps microphone channels to descriptions. - **`mic_sr`** (`float64`): Microphone sampling rate (Hz). - **`acc_path`** (`Audio`): Path to accelerometer audio (`.wav`), loaded as an Audio signal. - **`mic_path`** (`Audio`): Path to microphone audio (`.wav`), loaded as an Audio signal. - **`vocalization`** (`list[struct]`): Vocalization events, each with: - `overlap_type` (`string`): Overlap/attribution confidence. - `has_bird` (`bool`): Indicates if attributed to a bird. - `2ddistance` (`bool`): Indicates if 2D keypoint distance is <20px. - `small_2ddistance` (`float64`): Minimum 2D keypoint distance (px). - `voc_metadata` (`Sequence[float64]`): Onset/offset times `[onset_sec, offset_sec]`. ## How to Use ### Loading and Accessing Data ```python from datasets import load_dataset import numpy as np # Load dataset dataset = load_dataset("anonymous-submission000/bird3m") train_data = dataset["train"] # Access an example example = train_data[0] # Access fields bird_id = example["bird_id"] keypoints_3d = example["keypoints_3d"] top_bbox = example["top_bbox_2d"] vocalizations = example["vocalization"] # Load multimedia image = example["frame_path"] # PIL Image video = example["video_path"] # Video object mic_audio = example["mic_path"] # Audio signal acc_audio = example["acc_path"] # Audio signal # Access audio arrays mic_array = mic_audio["array"] mic_sr = mic_audio["sampling_rate"] acc_array = acc_audio["array"] acc_sr = acc_audio["sampling_rate"] # Load radio data radio_bytes = example["radio_path"] try: from io import BytesIO radio_data = np.load(BytesIO(radio_bytes)) print("Radio data keys:", list(radio_data.keys())) except Exception as e: print(f"Could not load radio data: {e}") # Print example info print(f"Bird ID: {bird_id}") print(f"Number of 3D keypoints: {len(keypoints_3d)}") print(f"Top Bounding Box: {top_bbox}") print(f"Number of vocalization events: {len(vocalizations)}") if vocalizations: first_vocal = vocalizations[0] print(f"First vocal event metadata: {first_vocal['voc_metadata']}") print(f"First vocal event overlap type: {first_vocal['overlap_type']}") ``` ### Example: Extracting Vocalization Audio Clip ```python if vocalizations and mic_sr: onset, offset = vocalizations[0]["voc_metadata"] onset_sample = int(onset * mic_sr) offset_sample = int(offset * mic_sr) vocal_audio_clip = mic_array[onset_sample:offset_sample] print(f"Duration of first vocal clip: {offset - onset:.3f} seconds") print(f"Shape of first vocal audio clip: {vocal_audio_clip.shape}") ``` **Code Availability**: Baseline code is available at [https://github.com/anonymoussubmission0000/bird3m](https://github.com/anonymoussubmission0000/bird3m). ## Citation ```bibtex @article{2025bird3m, title={Bird3M: A Multi-Modal Dataset for Social Behavior Analysis Tool Building}, author={tbd}, journal={arXiv preprint arXiv:XXXX.XXXXX}, year={2025} } ```