update readme
Browse files- README.md +171 -40
- load_dataset.py +182 -0
- upload_to_HF.py +227 -0
    	
        README.md
    CHANGED
    
    | @@ -8,43 +8,174 @@ license: | |
| 8 | 
             
            # ADT Dataset
         | 
| 9 |  | 
| 10 | 
             
            ## Dataset Description
         | 
| 11 | 
            -
            This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations.
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            ##  | 
| 14 | 
            -
            ```python
         | 
| 15 | 
            -
            from  | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
            #  | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
            ##  | 
| 50 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 8 | 
             
            # ADT Dataset
         | 
| 9 |  | 
| 10 | 
             
            ## Dataset Description
         | 
| 11 | 
            +
            This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations, including 2D/3D bounding boxes, trajectories, eye gaze data, and VRS recordings.
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            ## Quick Start
         | 
| 14 | 
            +
            ```python
         | 
| 15 | 
            +
            from adt_dataset_loader import ADTDatasetLoader
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # Load entire dataset
         | 
| 18 | 
            +
            loader = ADTDatasetLoader("ariakang/ADT-test")
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            # Load specific sequence
         | 
| 21 | 
            +
            loader = ADTDatasetLoader("ariakang/ADT-test", sequence_name="Apartment_release_clean_seq131_M1292")
         | 
| 22 | 
            +
            ```
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            ## Installation
         | 
| 25 | 
            +
            ```bash
         | 
| 26 | 
            +
            # Install required packages
         | 
| 27 | 
            +
            pip install datasets pandas
         | 
| 28 | 
            +
            ```
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ## Dataset Structure
         | 
| 31 | 
            +
            Each sequence contains:
         | 
| 32 | 
            +
            - VRS Files:
         | 
| 33 | 
            +
              - video.vrs
         | 
| 34 | 
            +
              - synthetic_video.vrs
         | 
| 35 | 
            +
              - segmentations.vrs
         | 
| 36 | 
            +
              - depth_images.vrs
         | 
| 37 | 
            +
            - CSV Data:
         | 
| 38 | 
            +
              - 2D/3D bounding boxes
         | 
| 39 | 
            +
              - Aria device trajectories
         | 
| 40 | 
            +
              - Eye gaze data
         | 
| 41 | 
            +
              - Scene objects
         | 
| 42 | 
            +
            - JSON Data:
         | 
| 43 | 
            +
              - Instance annotations
         | 
| 44 | 
            +
              - Metadata
         | 
| 45 | 
            +
            - MPS Data:
         | 
| 46 | 
            +
              - Eye gaze processing
         | 
| 47 | 
            +
              - SLAM results
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            ## Flexible Loading Options
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            ### 1. Load Entire Dataset
         | 
| 52 | 
            +
            ```python
         | 
| 53 | 
            +
            # Initialize loader with all sequences
         | 
| 54 | 
            +
            loader = ADTDatasetLoader("ariakang/ADT-test")
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            # See available sequences and data types
         | 
| 57 | 
            +
            available_files = loader.get_available_files()
         | 
| 58 | 
            +
            print("Available files:", available_files)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            # Load all data types
         | 
| 61 | 
            +
            bbox_2d = loader.load_2d_bounding_boxes()
         | 
| 62 | 
            +
            bbox_3d = loader.load_3d_bounding_boxes()
         | 
| 63 | 
            +
            trajectory = loader.load_aria_trajectory()
         | 
| 64 | 
            +
            eyegaze = loader.load_eyegaze()
         | 
| 65 | 
            +
            metadata = loader.load_metadata()
         | 
| 66 | 
            +
            slam_data = loader.load_mps_slam()
         | 
| 67 | 
            +
            ```
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            ### 2. Load Specific Sequences
         | 
| 70 | 
            +
            ```python
         | 
| 71 | 
            +
            # Load a specific sequence
         | 
| 72 | 
            +
            loader = ADTDatasetLoader(
         | 
| 73 | 
            +
                "ariakang/ADT-test",
         | 
| 74 | 
            +
                sequence_name="Apartment_release_clean_seq131_M1292"
         | 
| 75 | 
            +
            )
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            # Load data from this sequence
         | 
| 78 | 
            +
            bbox_2d = loader.load_2d_bounding_boxes()
         | 
| 79 | 
            +
            trajectory = loader.load_aria_trajectory()
         | 
| 80 | 
            +
            ```
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            ### 3. Load Selected Data Types
         | 
| 83 | 
            +
            ```python
         | 
| 84 | 
            +
            # Initialize loader for specific sequence
         | 
| 85 | 
            +
            loader = ADTDatasetLoader("ariakang/ADT-test", "Apartment_release_clean_seq131_M1292")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            # Load only 2D bounding boxes and VRS info
         | 
| 88 | 
            +
            bbox_2d = loader.load_2d_bounding_boxes()
         | 
| 89 | 
            +
            vrs_info = loader.get_vrs_files_info()
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            # Get paths to specific VRS files
         | 
| 92 | 
            +
            video_vrs = [f for f in vrs_info if f['filename'] == 'video.vrs'][0]
         | 
| 93 | 
            +
            print(f"Video VRS path: {video_vrs['path']}")
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            # Load only SLAM data
         | 
| 96 | 
            +
            slam_data = loader.load_mps_slam()
         | 
| 97 | 
            +
            closed_loop = slam_data['closed_loop']  # Get specific SLAM component
         | 
| 98 | 
            +
            ```
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            ## Available Data Types and Methods
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            ### Main Data Types
         | 
| 103 | 
            +
            ```python
         | 
| 104 | 
            +
            # Bounding Boxes and Trajectories
         | 
| 105 | 
            +
            bbox_2d = loader.load_2d_bounding_boxes()
         | 
| 106 | 
            +
            bbox_3d = loader.load_3d_bounding_boxes()
         | 
| 107 | 
            +
            trajectory = loader.load_aria_trajectory()
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            # Eye Gaze and Scene Data
         | 
| 110 | 
            +
            eyegaze = loader.load_eyegaze()
         | 
| 111 | 
            +
            scene_objects = loader.load_scene_objects()
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            # Metadata and Instances
         | 
| 114 | 
            +
            metadata = loader.load_metadata()
         | 
| 115 | 
            +
            instances = loader.load_instances()
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            # MPS Data
         | 
| 118 | 
            +
            eye_gaze_data = loader.load_mps_eye_gaze()  # Returns dict with 'general' and 'summary'
         | 
| 119 | 
            +
            slam_data = loader.load_mps_slam()  # Returns dict with various SLAM components
         | 
| 120 | 
            +
            ```
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            ### VRS Files
         | 
| 123 | 
            +
            ```python
         | 
| 124 | 
            +
            # Get VRS file information
         | 
| 125 | 
            +
            vrs_info = loader.get_vrs_files_info()
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            # Example: Access specific VRS file info
         | 
| 128 | 
            +
            for vrs_file in vrs_info:
         | 
| 129 | 
            +
                print(f"File: {vrs_file['filename']}")
         | 
| 130 | 
            +
                print(f"Path: {vrs_file['path']}")
         | 
| 131 | 
            +
                print(f"Size: {vrs_file['size_bytes'] / 1024 / 1024:.2f} MB")
         | 
| 132 | 
            +
            ```
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            ### Custom Loading
         | 
| 135 | 
            +
            ```python
         | 
| 136 | 
            +
            # Load any file by name
         | 
| 137 | 
            +
            data = loader.load_file_by_name("your_file_name.csv")
         | 
| 138 | 
            +
            ```
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            ## Data Format Examples
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            ### 2D Bounding Boxes
         | 
| 143 | 
            +
            ```python
         | 
| 144 | 
            +
            bbox_2d = loader.load_2d_bounding_boxes()
         | 
| 145 | 
            +
            print(bbox_2d.columns)
         | 
| 146 | 
            +
            # Columns: ['object_uid', 'timestamp[ns]', 'x_min[pixel]', 'x_max[pixel]', 'y_min[pixel]', 'y_max[pixel]']
         | 
| 147 | 
            +
            ```
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            ### Aria Trajectory
         | 
| 150 | 
            +
            ```python
         | 
| 151 | 
            +
            trajectory = loader.load_aria_trajectory()
         | 
| 152 | 
            +
            print(trajectory.columns)
         | 
| 153 | 
            +
            # Columns: ['timestamp[ns]', 'x', 'y', 'z', 'qx', 'qy', 'qz', 'qw']
         | 
| 154 | 
            +
            ```
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            ### MPS SLAM Data
         | 
| 157 | 
            +
            ```python
         | 
| 158 | 
            +
            slam_data = loader.load_mps_slam()
         | 
| 159 | 
            +
            # Components:
         | 
| 160 | 
            +
            # - closed_loop: DataFrame with closed-loop trajectory
         | 
| 161 | 
            +
            # - open_loop: DataFrame with open-loop trajectory
         | 
| 162 | 
            +
            # - calibration: Calibration parameters
         | 
| 163 | 
            +
            ```
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            ## Error Handling
         | 
| 166 | 
            +
            ```python
         | 
| 167 | 
            +
            try:
         | 
| 168 | 
            +
                data = loader.load_file_by_name("non_existent_file.csv")
         | 
| 169 | 
            +
            except ValueError as e:
         | 
| 170 | 
            +
                print(f"Error: {e}")
         | 
| 171 | 
            +
            ```
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            ## Notes
         | 
| 174 | 
            +
            - All CSV files are loaded as pandas DataFrames
         | 
| 175 | 
            +
            - JSON/JSONL files are loaded as Python dictionaries/lists
         | 
| 176 | 
            +
            - VRS files are not loaded into memory, only their metadata and paths are provided
         | 
| 177 | 
            +
            - Use `get_available_files()` to see all available data in your sequence
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            ## Repository Structure
         | 
| 180 | 
            +
            VRS files are stored in sequence-specific folders:
         | 
| 181 | 
            +
            `sequences/{sequence_name}/vrs_files/`
         | 
    	
        load_dataset.py
    ADDED
    
    | @@ -0,0 +1,182 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import io
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            from pathlib import Path
         | 
| 4 | 
            +
            from typing import Any, Dict, List, Union
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import pandas as pd
         | 
| 7 | 
            +
            from datasets import load_dataset
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            class ADTDatasetLoader:
         | 
| 11 | 
            +
                """Loader for ADT Dataset from Hugging Face."""
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                def __init__(self, repo_id: str = "ariakang/ADT-test", sequence_name: str = None):
         | 
| 14 | 
            +
                    """
         | 
| 15 | 
            +
                    Initialize the dataset loader.
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                    Args:
         | 
| 18 | 
            +
                        repo_id: Hugging Face repository ID
         | 
| 19 | 
            +
                        sequence_name: Specific sequence to load. If None, loads first available sequence
         | 
| 20 | 
            +
                    """
         | 
| 21 | 
            +
                    self.dataset = load_dataset(repo_id)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                    if sequence_name is None:
         | 
| 24 | 
            +
                        sequence_name = list(self.dataset.keys())[0]
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    self.sequence_name = sequence_name
         | 
| 27 | 
            +
                    self.sequence = self.dataset[sequence_name]
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    # Create a mapping of filenames to indices for faster access
         | 
| 30 | 
            +
                    self.file_index = {
         | 
| 31 | 
            +
                        filename: idx for idx, filename in enumerate(self.sequence["filename"])
         | 
| 32 | 
            +
                    }
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                def _deserialize_csv(self, csv_string: str) -> pd.DataFrame:
         | 
| 35 | 
            +
                    """Convert CSV string to DataFrame."""
         | 
| 36 | 
            +
                    return pd.read_csv(io.StringIO(csv_string))
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                def _deserialize_json(self, json_string: str) -> Union[Dict, List]:
         | 
| 39 | 
            +
                    """Convert JSON string to Python object."""
         | 
| 40 | 
            +
                    return json.loads(json_string)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                def get_available_files(self) -> List[Dict[str, str]]:
         | 
| 43 | 
            +
                    """Get list of all available files and their types."""
         | 
| 44 | 
            +
                    return [
         | 
| 45 | 
            +
                        {"filename": filename, "type": dtype}
         | 
| 46 | 
            +
                        for filename, dtype in zip(
         | 
| 47 | 
            +
                            self.sequence["filename"], self.sequence["data_type"]
         | 
| 48 | 
            +
                        )
         | 
| 49 | 
            +
                    ]
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def load_file_by_name(self, filename: str) -> Any:
         | 
| 52 | 
            +
                    """
         | 
| 53 | 
            +
                    Load specific file by name.
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    Args:
         | 
| 56 | 
            +
                        filename: Name of the file to load (e.g., "2d_bounding_box.csv")
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    Returns:
         | 
| 59 | 
            +
                        DataFrame for CSV files, dict/list for JSON files
         | 
| 60 | 
            +
                    """
         | 
| 61 | 
            +
                    if filename not in self.file_index:
         | 
| 62 | 
            +
                        raise ValueError(f"File {filename} not found in dataset")
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    idx = self.file_index[filename]
         | 
| 65 | 
            +
                    data_type = self.sequence["data_type"][idx]
         | 
| 66 | 
            +
                    data = self.sequence["data"][idx]
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    if data_type == "csv":
         | 
| 69 | 
            +
                        return self._deserialize_csv(data)
         | 
| 70 | 
            +
                    elif data_type in ["json", "jsonl"]:
         | 
| 71 | 
            +
                        return self._deserialize_json(data)
         | 
| 72 | 
            +
                    else:
         | 
| 73 | 
            +
                        return data
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def load_2d_bounding_boxes(self) -> pd.DataFrame:
         | 
| 76 | 
            +
                    """Load 2D bounding box data."""
         | 
| 77 | 
            +
                    return self.load_file_by_name("2d_bounding_box.csv")
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                def load_3d_bounding_boxes(self) -> pd.DataFrame:
         | 
| 80 | 
            +
                    """Load 3D bounding box data."""
         | 
| 81 | 
            +
                    return self.load_file_by_name("3d_bounding_box.csv")
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                def load_aria_trajectory(self) -> pd.DataFrame:
         | 
| 84 | 
            +
                    """Load Aria device trajectory data."""
         | 
| 85 | 
            +
                    return self.load_file_by_name("aria_trajectory.csv")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                def load_eyegaze(self) -> pd.DataFrame:
         | 
| 88 | 
            +
                    """Load eye gaze data."""
         | 
| 89 | 
            +
                    return self.load_file_by_name("eyegaze.csv")
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def load_scene_objects(self) -> pd.DataFrame:
         | 
| 92 | 
            +
                    """Load scene objects data."""
         | 
| 93 | 
            +
                    return self.load_file_by_name("scene_objects.csv")
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def load_instances(self) -> Dict:
         | 
| 96 | 
            +
                    """Load instances data."""
         | 
| 97 | 
            +
                    return self.load_file_by_name("instances.json")
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                def load_metadata(self) -> Dict:
         | 
| 100 | 
            +
                    """Load metadata."""
         | 
| 101 | 
            +
                    return self.load_file_by_name("metadata.json")
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def load_mps_eye_gaze(self) -> Dict[str, Union[pd.DataFrame, Dict]]:
         | 
| 104 | 
            +
                    """Load MPS eye gaze data."""
         | 
| 105 | 
            +
                    return {
         | 
| 106 | 
            +
                        "general": self.load_file_by_name("mps/eye_gaze/general_eye_gaze.csv"),
         | 
| 107 | 
            +
                        "summary": self.load_file_by_name("mps/eye_gaze/summary.json"),
         | 
| 108 | 
            +
                    }
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def load_mps_slam(self) -> Dict[str, Union[pd.DataFrame, List]]:
         | 
| 111 | 
            +
                    """Load MPS SLAM data."""
         | 
| 112 | 
            +
                    return {
         | 
| 113 | 
            +
                        "closed_loop": self.load_file_by_name(
         | 
| 114 | 
            +
                            "mps/slam/closed_loop_trajectory.csv"
         | 
| 115 | 
            +
                        ),
         | 
| 116 | 
            +
                        "open_loop": self.load_file_by_name("mps/slam/open_loop_trajectory.csv"),
         | 
| 117 | 
            +
                        "calibration": self.load_file_by_name("mps/slam/online_calibration.jsonl"),
         | 
| 118 | 
            +
                    }
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def get_vrs_files_info(self) -> List[Dict]:
         | 
| 121 | 
            +
                    """Get information about VRS files."""
         | 
| 122 | 
            +
                    vrs_info = self.load_file_by_name("vrs_files_info.json")
         | 
| 123 | 
            +
                    return self._deserialize_json(vrs_info)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            def print_dataset_summary(data: Any, name: str):
         | 
| 127 | 
            +
                """Print summary of loaded data."""
         | 
| 128 | 
            +
                if isinstance(data, pd.DataFrame):
         | 
| 129 | 
            +
                    print(f"\n{name}:")
         | 
| 130 | 
            +
                    print(f"Shape: {data.shape}")
         | 
| 131 | 
            +
                    print("Columns:", list(data.columns))
         | 
| 132 | 
            +
                    print("Sample data:")
         | 
| 133 | 
            +
                    print(data.head(2))
         | 
| 134 | 
            +
                elif isinstance(data, dict):
         | 
| 135 | 
            +
                    print(f"\n{name}:")
         | 
| 136 | 
            +
                    print("Keys:", list(data.keys()))
         | 
| 137 | 
            +
                elif isinstance(data, list):
         | 
| 138 | 
            +
                    print(f"\n{name}:")
         | 
| 139 | 
            +
                    print(f"Number of items: {len(data)}")
         | 
| 140 | 
            +
                    if data:
         | 
| 141 | 
            +
                        print("First item sample:", data[0])
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            def main():
         | 
| 145 | 
            +
                """Example usage of the dataset loader."""
         | 
| 146 | 
            +
                loader = ADTDatasetLoader()
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                print(f"Loading sequence: {loader.sequence_name}")
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                # Print available files
         | 
| 151 | 
            +
                print("\nAvailable files:")
         | 
| 152 | 
            +
                for file_info in loader.get_available_files():
         | 
| 153 | 
            +
                    print(f"- {file_info['filename']} ({file_info['type']})")
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                # Load and print summaries of all data types
         | 
| 156 | 
            +
                print("\n=== Loading all data types ===")
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                # Bounding boxes
         | 
| 159 | 
            +
                print_dataset_summary(loader.load_2d_bounding_boxes(), "2D Bounding Boxes")
         | 
| 160 | 
            +
                print_dataset_summary(loader.load_3d_bounding_boxes(), "3D Bounding Boxes")
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                # Trajectory and eye gaze
         | 
| 163 | 
            +
                print_dataset_summary(loader.load_aria_trajectory(), "Aria Trajectory")
         | 
| 164 | 
            +
                print_dataset_summary(loader.load_eyegaze(), "Eye Gaze")
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                # Scene objects
         | 
| 167 | 
            +
                print_dataset_summary(loader.load_scene_objects(), "Scene Objects")
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                # JSON data
         | 
| 170 | 
            +
                print_dataset_summary(loader.load_instances(), "Instances")
         | 
| 171 | 
            +
                print_dataset_summary(loader.load_metadata(), "Metadata")
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                # MPS data
         | 
| 174 | 
            +
                print_dataset_summary(loader.load_mps_eye_gaze(), "MPS Eye Gaze")
         | 
| 175 | 
            +
                print_dataset_summary(loader.load_mps_slam(), "MPS SLAM")
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                # VRS files info
         | 
| 178 | 
            +
                print_dataset_summary(loader.get_vrs_files_info(), "VRS Files")
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            if __name__ == "__main__":
         | 
| 182 | 
            +
                main()
         | 
    	
        upload_to_HF.py
    ADDED
    
    | @@ -0,0 +1,227 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import io
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            from pathlib import Path
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            import pandas as pd
         | 
| 7 | 
            +
            from datasets import Dataset, DatasetDict
         | 
| 8 | 
            +
            from huggingface_hub import HfApi
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            def serialize_dataframe(df):
         | 
| 12 | 
            +
                """Convert DataFrame to string."""
         | 
| 13 | 
            +
                buffer = io.StringIO()
         | 
| 14 | 
            +
                df.to_csv(buffer, index=False)
         | 
| 15 | 
            +
                return buffer.getvalue()
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            def load_csv_safely(file_path):
         | 
| 19 | 
            +
                """Load CSV file and convert to string."""
         | 
| 20 | 
            +
                if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
         | 
| 21 | 
            +
                    df = pd.read_csv(file_path)
         | 
| 22 | 
            +
                    return serialize_dataframe(df)
         | 
| 23 | 
            +
                return ""
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def load_json_safely(file_path):
         | 
| 27 | 
            +
                """Load JSON/JSONL file and convert to string."""
         | 
| 28 | 
            +
                if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
         | 
| 29 | 
            +
                    with open(file_path, "r") as f:
         | 
| 30 | 
            +
                        if file_path.endswith(".jsonl"):
         | 
| 31 | 
            +
                            data = [json.loads(line) for line in f if line.strip()]
         | 
| 32 | 
            +
                        else:
         | 
| 33 | 
            +
                            try:
         | 
| 34 | 
            +
                                data = json.load(f)
         | 
| 35 | 
            +
                            except json.JSONDecodeError:
         | 
| 36 | 
            +
                                f.seek(0)
         | 
| 37 | 
            +
                                data = [json.loads(line) for line in f if line.strip()]
         | 
| 38 | 
            +
                        return json.dumps(data)
         | 
| 39 | 
            +
                return ""
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def upload_sequence(sequence_path, sequence_name, repo_id="ariakang/ADT-test"):
         | 
| 43 | 
            +
                """Upload a single sequence to Hugging Face Hub."""
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                print(f"Starting upload process for sequence: {sequence_name}")
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                # Initialize Hugging Face API
         | 
| 48 | 
            +
                api = HfApi()
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                # Upload VRS files first
         | 
| 51 | 
            +
                print("Uploading VRS files...")
         | 
| 52 | 
            +
                vrs_files = list(Path(sequence_path).glob("*.vrs"))
         | 
| 53 | 
            +
                print(f"Found VRS files:", [f.name for f in vrs_files])
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                vrs_info = []
         | 
| 56 | 
            +
                for vrs_file in vrs_files:
         | 
| 57 | 
            +
                    print(f"Uploading {vrs_file.name}...")
         | 
| 58 | 
            +
                    path_in_repo = f"sequences/{sequence_name}/vrs_files/{vrs_file.name}"
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    try:
         | 
| 61 | 
            +
                        api.upload_file(
         | 
| 62 | 
            +
                            path_or_fileobj=str(vrs_file),
         | 
| 63 | 
            +
                            path_in_repo=path_in_repo,
         | 
| 64 | 
            +
                            repo_id=repo_id,
         | 
| 65 | 
            +
                            repo_type="dataset",
         | 
| 66 | 
            +
                        )
         | 
| 67 | 
            +
                        print(f"Uploaded {vrs_file.name}")
         | 
| 68 | 
            +
                        vrs_info.append(
         | 
| 69 | 
            +
                            {
         | 
| 70 | 
            +
                                "filename": vrs_file.name,
         | 
| 71 | 
            +
                                "path": path_in_repo,
         | 
| 72 | 
            +
                                "size_bytes": vrs_file.stat().st_size,
         | 
| 73 | 
            +
                            }
         | 
| 74 | 
            +
                        )
         | 
| 75 | 
            +
                    except Exception as e:
         | 
| 76 | 
            +
                        print(f"Error uploading {vrs_file.name}: {str(e)}")
         | 
| 77 | 
            +
                        raise
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                # Prepare sequence data
         | 
| 80 | 
            +
                sequence_data = {
         | 
| 81 | 
            +
                    "data_type": [],  # To identify what type of data each entry is
         | 
| 82 | 
            +
                    "data": [],  # The serialized data
         | 
| 83 | 
            +
                    "filename": [],  # Original filename
         | 
| 84 | 
            +
                }
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                # Load CSV files
         | 
| 87 | 
            +
                csv_files = [
         | 
| 88 | 
            +
                    "2d_bounding_box.csv",
         | 
| 89 | 
            +
                    "3d_bounding_box.csv",
         | 
| 90 | 
            +
                    "aria_trajectory.csv",
         | 
| 91 | 
            +
                    "eyegaze.csv",
         | 
| 92 | 
            +
                    "scene_objects.csv",
         | 
| 93 | 
            +
                ]
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                for file in csv_files:
         | 
| 96 | 
            +
                    file_path = os.path.join(sequence_path, file)
         | 
| 97 | 
            +
                    data = load_csv_safely(file_path)
         | 
| 98 | 
            +
                    if data:
         | 
| 99 | 
            +
                        sequence_data["data_type"].append("csv")
         | 
| 100 | 
            +
                        sequence_data["data"].append(data)
         | 
| 101 | 
            +
                        sequence_data["filename"].append(file)
         | 
| 102 | 
            +
                        print(f"Loaded {file}")
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                # Load JSON files
         | 
| 105 | 
            +
                json_files = ["instances.json", "metadata.json"]
         | 
| 106 | 
            +
                for file in json_files:
         | 
| 107 | 
            +
                    file_path = os.path.join(sequence_path, file)
         | 
| 108 | 
            +
                    data = load_json_safely(file_path)
         | 
| 109 | 
            +
                    if data:
         | 
| 110 | 
            +
                        sequence_data["data_type"].append("json")
         | 
| 111 | 
            +
                        sequence_data["data"].append(data)
         | 
| 112 | 
            +
                        sequence_data["filename"].append(file)
         | 
| 113 | 
            +
                        print(f"Loaded {file}")
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                # Load MPS folder data
         | 
| 116 | 
            +
                mps_path = os.path.join(sequence_path, "mps")
         | 
| 117 | 
            +
                if os.path.exists(mps_path):
         | 
| 118 | 
            +
                    # Eye gaze data
         | 
| 119 | 
            +
                    eye_gaze_path = os.path.join(mps_path, "eye_gaze")
         | 
| 120 | 
            +
                    if os.path.exists(eye_gaze_path):
         | 
| 121 | 
            +
                        data = load_csv_safely(os.path.join(eye_gaze_path, "general_eye_gaze.csv"))
         | 
| 122 | 
            +
                        if data:
         | 
| 123 | 
            +
                            sequence_data["data_type"].append("csv")
         | 
| 124 | 
            +
                            sequence_data["data"].append(data)
         | 
| 125 | 
            +
                            sequence_data["filename"].append("mps/eye_gaze/general_eye_gaze.csv")
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                        data = load_json_safely(os.path.join(eye_gaze_path, "summary.json"))
         | 
| 128 | 
            +
                        if data:
         | 
| 129 | 
            +
                            sequence_data["data_type"].append("json")
         | 
| 130 | 
            +
                            sequence_data["data"].append(data)
         | 
| 131 | 
            +
                            sequence_data["filename"].append("mps/eye_gaze/summary.json")
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    # SLAM data
         | 
| 134 | 
            +
                    slam_path = os.path.join(mps_path, "slam")
         | 
| 135 | 
            +
                    if os.path.exists(slam_path):
         | 
| 136 | 
            +
                        for file in ["closed_loop_trajectory.csv", "open_loop_trajectory.csv"]:
         | 
| 137 | 
            +
                            data = load_csv_safely(os.path.join(slam_path, file))
         | 
| 138 | 
            +
                            if data:
         | 
| 139 | 
            +
                                sequence_data["data_type"].append("csv")
         | 
| 140 | 
            +
                                sequence_data["data"].append(data)
         | 
| 141 | 
            +
                                sequence_data["filename"].append(f"mps/slam/{file}")
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                        data = load_json_safely(os.path.join(slam_path, "online_calibration.jsonl"))
         | 
| 144 | 
            +
                        if data:
         | 
| 145 | 
            +
                            sequence_data["data_type"].append("jsonl")
         | 
| 146 | 
            +
                            sequence_data["data"].append(data)
         | 
| 147 | 
            +
                            sequence_data["filename"].append("mps/slam/online_calibration.jsonl")
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                # Add VRS file information
         | 
| 150 | 
            +
                sequence_data["data_type"].append("vrs_info")
         | 
| 151 | 
            +
                sequence_data["data"].append(json.dumps(vrs_info))
         | 
| 152 | 
            +
                sequence_data["filename"].append("vrs_files_info.json")
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                # Create dataset
         | 
| 155 | 
            +
                dataset_dict = DatasetDict({sequence_name: Dataset.from_dict(sequence_data)})
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                print("\nPushing dataset to hub...")
         | 
| 158 | 
            +
                dataset_dict.push_to_hub(repo_id=repo_id, private=True)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                # Update README
         | 
| 161 | 
            +
                readme_content = """---
         | 
| 162 | 
            +
            language:
         | 
| 163 | 
            +
            - en
         | 
| 164 | 
            +
            license:
         | 
| 165 | 
            +
            - mit
         | 
| 166 | 
            +
            ---
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            # ADT Dataset
         | 
| 169 | 
            +
             | 
| 170 | 
            +
            ## Dataset Description
         | 
| 171 | 
            +
            This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations.
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            ## Usage Example
         | 
| 174 | 
            +
            ```python
         | 
| 175 | 
            +
            from datasets import load_dataset
         | 
| 176 | 
            +
            import pandas as pd
         | 
| 177 | 
            +
            import json
         | 
| 178 | 
            +
            import io
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            def deserialize_csv(csv_string):
         | 
| 181 | 
            +
                return pd.read_csv(io.StringIO(csv_string))
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            def deserialize_json(json_string):
         | 
| 184 | 
            +
                return json.loads(json_string)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            # Load the dataset
         | 
| 187 | 
            +
            dataset = load_dataset("ariakang/ADT-test")
         | 
| 188 | 
            +
            sequence = dataset["{sequence_name}"]
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            # Get list of available files
         | 
| 191 | 
            +
            files = list(zip(sequence["filename"], sequence["data_type"]))
         | 
| 192 | 
            +
            print("Available files:", files)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            # Load specific data
         | 
| 195 | 
            +
            for i, (filename, data_type, data) in enumerate(zip(
         | 
| 196 | 
            +
                sequence["filename"], sequence["data_type"], sequence["data"]
         | 
| 197 | 
            +
            )):
         | 
| 198 | 
            +
                if data_type == "csv":
         | 
| 199 | 
            +
                    df = deserialize_csv(data)
         | 
| 200 | 
            +
                    print(f"Loaded CSV {filename}: {len(df)} rows")
         | 
| 201 | 
            +
                elif data_type in ["json", "jsonl"]:
         | 
| 202 | 
            +
                    json_data = deserialize_json(data)
         | 
| 203 | 
            +
                    print(f"Loaded JSON {filename}")
         | 
| 204 | 
            +
                elif data_type == "vrs_info":
         | 
| 205 | 
            +
                    vrs_info = deserialize_json(data)
         | 
| 206 | 
            +
                    print(f"VRS files: {[f['filename'] for f in vrs_info]}")
         | 
| 207 | 
            +
            ```
         | 
| 208 | 
            +
             | 
| 209 | 
            +
            ## VRS Files
         | 
| 210 | 
            +
            VRS files are stored in: sequences/{sequence_name}/vrs_files/
         | 
| 211 | 
            +
            """
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                api.upload_file(
         | 
| 214 | 
            +
                    path_or_fileobj=readme_content.encode(),
         | 
| 215 | 
            +
                    path_in_repo="README.md",
         | 
| 216 | 
            +
                    repo_id=repo_id,
         | 
| 217 | 
            +
                    repo_type="dataset",
         | 
| 218 | 
            +
                )
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                return f"https://huggingface.co/datasets/{repo_id}"
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            if __name__ == "__main__":
         | 
| 224 | 
            +
                sequence_path = "/Users/ariak/Documents/projectaria_tools_adt_data/Apartment_release_clean_seq131_M1292"
         | 
| 225 | 
            +
                sequence_name = "Apartment_release_clean_seq131_M1292"
         | 
| 226 | 
            +
                repo_url = upload_sequence(sequence_path, sequence_name)
         | 
| 227 | 
            +
                print(f"Dataset uploaded successfully to: {repo_url}")
         | 
