--- language: - en size_categories: - 10K, # Original resolution (up to 1600×2200) 'source_dataset': 'Rexhaif/xsum_reduced', 'original_split': 'train', 'original_index': 0 } ``` ## Usage ### Loading the Dataset ```python from datasets import load_dataset # Load full dataset dataset = load_dataset("baconnier/deepsynth-en-xsum") # Streaming for large datasets dataset = load_dataset("baconnier/deepsynth-en-xsum", streaming=True) ``` ### Training Example with DeepSeek-OCR and Augmentation ```python from transformers import AutoProcessor, AutoModelForVision2Seq from datasets import load_dataset from deepsynth.data.transforms import create_training_transform # Load model and processor model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/DeepSeek-OCR") processor = AutoProcessor.from_pretrained("deepseek-ai/DeepSeek-OCR") # Load dataset dataset = load_dataset("baconnier/deepsynth-en-xsum") # Create augmentation pipeline (random rotation, perspective, resize, color jitter) transform = create_training_transform( target_size_range=(512, 1600), # Random resize range rotation_degrees=10, # ±10° rotation perspective_distortion=0.1, # Perspective transform brightness_factor=0.2, # ±20% brightness contrast_factor=0.2, # ±20% contrast ) # Process sample with augmentation sample = dataset['train'][0] augmented_image = transform(sample['image']) # Apply random transforms inputs = processor( images=augmented_image, text=sample['text'], return_tensors="pt" ) # Fine-tune decoder only (freeze encoder) for param in model.encoder.parameters(): param.requires_grad = False # Training loop with on-the-fly augmentation... ``` ## Training Recommendations ### DeepSeek-OCR Fine-Tuning ```python # Recommended hyperparameters with augmentation training_args = { "learning_rate": 2e-5, "batch_size": 4, "gradient_accumulation_steps": 4, "num_epochs": 3, "mixed_precision": "bf16", "freeze_encoder": True, # IMPORTANT: Only fine-tune decoder # Augmentation parameters "rotation_degrees": 10, # Random rotation ±10° "perspective_distortion": 0.1, # Perspective transform "resize_range": (512, 1600), # Random resize 512-1600px "brightness_factor": 0.2, # ±20% brightness "contrast_factor": 0.2, # ±20% contrast } ``` ### Expected Performance - **Baseline (text-to-text)**: ROUGE-1 ~40-42 - **DeepSeek-OCR (visual)**: ROUGE-1 ~44-47 (typical SOTA) - **Training Time**: ~6-8 hours on A100 (80GB) for full dataset - **GPU Memory**: ~40GB with batch_size=4, mixed_precision=bf16 ## Dataset Creation This dataset was created using the **DeepSynth** pipeline: 1. **Source Loading**: Original text documents from Rexhaif/xsum_reduced 2. **Text-to-Image Conversion**: Documents rendered as PNG images (DejaVu Sans 12pt, Unicode support) 3. **Original Resolution Storage**: Full-quality images stored once (up to 1600×2200) 4. **Incremental Upload**: Batches of 5,000 samples uploaded to HuggingFace Hub 5. **Deduplication**: Source tracking prevents duplicate samples **Note**: Images are augmented on-the-fly during training using random transformations (rotation, perspective, resize, color jitter) for better generalization across different resolutions and conditions. ### Rendering Specifications - **Font**: DejaVu Sans 12pt (full Unicode support for multilingual text) - **Line Wrapping**: 100 characters per line - **Margin**: 40px - **Background**: White (255, 255, 255) - **Text Color**: Black (0, 0, 0) - **Format**: PNG with lossless compression ## Citation If you use this dataset in your research, please cite: ```bibtex @misc{deepsynth-en-xsum, title={{DeepSynth XSum BBC News Summarization: Visual Text Encoding with Random Augmentation for Summarization}}, author={Baconnier}, year={2025}, publisher={HuggingFace}, howpublished={\url{https://huggingface.co/datasets/baconnier/deepsynth-en-xsum}} } ``` ### Source Dataset Citation ```bibtex @inproceedings{narayan2018don, title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization}, author={Narayan, Shashi and Cohen, Shay B and Lapata, Mirella}, booktitle={Proceedings of EMNLP}, year={2018} } ``` ## License MIT License - See source dataset for full license terms. **Note**: This dataset inherits the license from the original source dataset. Please review the source license before commercial use. ## Limitations and Bias - **Extreme summarization**: Single-sentence summaries may lose important details - **UK-centric**: Primarily British news and perspectives - **Short summaries**: Not suitable for multi-sentence summary training - **Temporal bias**: Articles from 2010-2017 ## Additional Information ### Dataset Curators Created by the DeepSynth team as part of multilingual visual summarization research. ### Contact - **Repository**: [DeepSynth GitHub](https://github.com/bacoco/DeepSynth) - **Issues**: [GitHub Issues](https://github.com/bacoco/DeepSynth/issues) ### Acknowledgments - **DeepSeek-OCR**: Visual encoder from DeepSeek AI - **Source Dataset**: Rexhaif/xsum_reduced - **HuggingFace**: Dataset hosting and infrastructure