File size: 2,745 Bytes
bdb4017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# AVSpeech Metadata Files

This repository contains the metadata CSV files for the [AVSpeech dataset](https://research.google.com/avspeech/) by Google Research.

## Dataset Description

AVSpeech is a large-scale audio-visual speech dataset containing over 290,000 video segments from YouTube, designed for audio-visual speech recognition and lip reading research.

## Files

- `avspeech_train.csv` (128 MB) - Training set with 2,621,845 video segments from 270k videos
- `avspeech_test.csv` (9 MB) - Test set with video segments from a separate set of 22k videos

## CSV Format

Each row contains:
```
YouTube ID, start_time, end_time, x_coordinate, y_coordinate
```

Where:
- **YouTube ID**: The YouTube video identifier
- **start_time**: Start time of the segment in seconds
- **end_time**: End time of the segment in seconds
- **x_coordinate**: X coordinate of the speaker's face center (normalized 0.0-1.0, 0.0 = left)
- **y_coordinate**: Y coordinate of the speaker's face center (normalized 0.0-1.0, 0.0 = top)

The train and test sets have disjoint speakers.

## Usage

### With Hugging Face Hub

```python
from huggingface_hub import hf_hub_download

# Download train CSV
train_csv = hf_hub_download(
    repo_id="bbrothers/avspeech-metadata",
    filename="avspeech_train.csv",
    repo_type="dataset"
)

# Download test CSV
test_csv = hf_hub_download(
    repo_id="bbrothers/avspeech-metadata",
    filename="avspeech_test.csv",
    repo_type="dataset"
)
```

### With our dataset loader

```python
from ml.data.av_speech.dataset import AVSpeechDataset

# Initialize dataset (will auto-download CSVs if needed)
dataset = AVSpeechDataset()

# Download videos
dataset.download(
    splits=['train', 'test'],
    max_videos=100,  # Or None for all videos
    num_workers=4
)
```

## Citation

If you use this dataset, please cite the original AVSpeech paper:

```bibtex
@inproceedings{ephrat2018looking,
  title={Looking to listen at the cocktail party: A speaker-independent audio-visual model for speech separation},
  author={Ephrat, Ariel and Mosseri, Inbar and Lang, Oran and Dekel, Tali and Wilson, Kevin and Hassidim, Avinatan and Freeman, William T and Rubinstein, Michael},
  booktitle={ACM SIGGRAPH 2018},
  year={2018}
}
```

## Links

- [AVSpeech Official Page](https://research.google.com/avspeech/)
- [Original Paper](https://arxiv.org/abs/1804.03619)
- [Our GitHub Repository](https://github.com/Pierre-LouisBJT/interconnect)

## Notes

- This repository only contains the metadata CSV files, not the actual video content
- Videos must be downloaded from YouTube using the provided YouTube IDs
- Some videos may no longer be available (deleted, private, or geo-blocked)
- Estimated total dataset size: ~4500 hours of video