first commit
Browse files- README.md +85 -0
- WCEP-10.py +158 -0
- test.zip +3 -0
- train.zip +3 -0
- val.zip +3 -0
README.md
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
languages:
|
| 3 |
+
- en
|
| 4 |
+
multilinguality:
|
| 5 |
+
- monolingual
|
| 6 |
+
size_categories:
|
| 7 |
+
- 1K<n<10K
|
| 8 |
+
task_categories:
|
| 9 |
+
- conditional-text-generation
|
| 10 |
+
task_ids:
|
| 11 |
+
- summarization
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# WCEP10 dataset for summarization
|
| 15 |
+
|
| 16 |
+
Summarization dataset copied from [PRIMERA](https://github.com/allenai/PRIMER)
|
| 17 |
+
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable:
|
| 18 |
+
```python
|
| 19 |
+
"ccdv/WCEP-10": ("document", "summary")
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
# Configs
|
| 23 |
+
3 possibles configs:
|
| 24 |
+
- `roberta` will concatenate documents with "</s>" (default)
|
| 25 |
+
- `newline` will concatenate documents with "\n"
|
| 26 |
+
- `bert` will concatenate documents with "[SEP]"
|
| 27 |
+
- `list` will return the list of documents instead of a string
|
| 28 |
+
|
| 29 |
+
### Data Fields
|
| 30 |
+
|
| 31 |
+
- `id`: paper id
|
| 32 |
+
- `document`: a string/list containing the body of a set of documents
|
| 33 |
+
- `summary`: a string containing the abstract of the set
|
| 34 |
+
|
| 35 |
+
### Data Splits
|
| 36 |
+
|
| 37 |
+
This dataset has 3 splits: _train_, _validation_, and _test_. \
|
| 38 |
+
Token counts are white space based.
|
| 39 |
+
|
| 40 |
+
| Dataset Split | Number of Instances |
|
| 41 |
+
| ------------- | --------------------|
|
| 42 |
+
| Train | 8158 |
|
| 43 |
+
| Validation | 1020 |
|
| 44 |
+
| Test | 1022 |
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Cite original article
|
| 48 |
+
```
|
| 49 |
+
@article{DBLP:journals/corr/abs-2005-10070,
|
| 50 |
+
author = {Demian Gholipour Ghalandari and
|
| 51 |
+
Chris Hokamp and
|
| 52 |
+
Nghia The Pham and
|
| 53 |
+
John Glover and
|
| 54 |
+
Georgiana Ifrim},
|
| 55 |
+
title = {A Large-Scale Multi-Document Summarization Dataset from the Wikipedia
|
| 56 |
+
Current Events Portal},
|
| 57 |
+
journal = {CoRR},
|
| 58 |
+
volume = {abs/2005.10070},
|
| 59 |
+
year = {2020},
|
| 60 |
+
url = {https://arxiv.org/abs/2005.10070},
|
| 61 |
+
eprinttype = {arXiv},
|
| 62 |
+
eprint = {2005.10070},
|
| 63 |
+
timestamp = {Fri, 22 May 2020 16:21:28 +0200},
|
| 64 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2005-10070.bib},
|
| 65 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
@article{DBLP:journals/corr/abs-2110-08499,
|
| 69 |
+
author = {Wen Xiao and
|
| 70 |
+
Iz Beltagy and
|
| 71 |
+
Giuseppe Carenini and
|
| 72 |
+
Arman Cohan},
|
| 73 |
+
title = {{PRIMER:} Pyramid-based Masked Sentence Pre-training for Multi-document
|
| 74 |
+
Summarization},
|
| 75 |
+
journal = {CoRR},
|
| 76 |
+
volume = {abs/2110.08499},
|
| 77 |
+
year = {2021},
|
| 78 |
+
url = {https://arxiv.org/abs/2110.08499},
|
| 79 |
+
eprinttype = {arXiv},
|
| 80 |
+
eprint = {2110.08499},
|
| 81 |
+
timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
|
| 82 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2110-08499.bib},
|
| 83 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 84 |
+
}
|
| 85 |
+
```
|
WCEP-10.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets.tasks import TextClassification
|
| 6 |
+
|
| 7 |
+
_CITATION = None
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
_DESCRIPTION = """
|
| 11 |
+
WCEP10 dataset for summarization.
|
| 12 |
+
From paper: "A Large-Scale Multi-Document Summarization Dataset from the Wikipedia
|
| 13 |
+
Current Events Portal" by D. Gholipour et al."
|
| 14 |
+
From paper: "PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document
|
| 15 |
+
Summarization" by W. Xiao et al."
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
_CITATION = """\
|
| 19 |
+
@article{DBLP:journals/corr/abs-2005-10070,
|
| 20 |
+
author = {Demian Gholipour Ghalandari and
|
| 21 |
+
Chris Hokamp and
|
| 22 |
+
Nghia The Pham and
|
| 23 |
+
John Glover and
|
| 24 |
+
Georgiana Ifrim},
|
| 25 |
+
title = {A Large-Scale Multi-Document Summarization Dataset from the Wikipedia
|
| 26 |
+
Current Events Portal},
|
| 27 |
+
journal = {CoRR},
|
| 28 |
+
volume = {abs/2005.10070},
|
| 29 |
+
year = {2020},
|
| 30 |
+
url = {https://arxiv.org/abs/2005.10070},
|
| 31 |
+
eprinttype = {arXiv},
|
| 32 |
+
eprint = {2005.10070},
|
| 33 |
+
timestamp = {Fri, 22 May 2020 16:21:28 +0200},
|
| 34 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2005-10070.bib},
|
| 35 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@article{DBLP:journals/corr/abs-2110-08499,
|
| 40 |
+
author = {Wen Xiao and
|
| 41 |
+
Iz Beltagy and
|
| 42 |
+
Giuseppe Carenini and
|
| 43 |
+
Arman Cohan},
|
| 44 |
+
title = {{PRIMER:} Pyramid-based Masked Sentence Pre-training for Multi-document
|
| 45 |
+
Summarization},
|
| 46 |
+
journal = {CoRR},
|
| 47 |
+
volume = {abs/2110.08499},
|
| 48 |
+
year = {2021},
|
| 49 |
+
url = {https://arxiv.org/abs/2110.08499},
|
| 50 |
+
eprinttype = {arXiv},
|
| 51 |
+
eprint = {2110.08499},
|
| 52 |
+
timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
|
| 53 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2110-08499.bib},
|
| 54 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 55 |
+
}
|
| 56 |
+
"""
|
| 57 |
+
_ABSTRACT = "summary"
|
| 58 |
+
_ARTICLE = "document"
|
| 59 |
+
|
| 60 |
+
class WCEP10SummarizationConfig(datasets.BuilderConfig):
|
| 61 |
+
"""BuilderConfig for WCEP10Summarization."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, **kwargs):
|
| 64 |
+
"""BuilderConfig for WCEP10Summarization.
|
| 65 |
+
Args:
|
| 66 |
+
**kwargs: keyword arguments forwarded to super.
|
| 67 |
+
"""
|
| 68 |
+
super(WCEP10SummarizationConfig, self).__init__(**kwargs)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class WCEP10SummarizationDataset(datasets.GeneratorBasedBuilder):
|
| 72 |
+
"""WCEP10Summarization Dataset."""
|
| 73 |
+
|
| 74 |
+
_TRAIN_FILE = "train.zip"
|
| 75 |
+
_VAL_FILE = "val.zip"
|
| 76 |
+
_TEST_FILE = "test.zip"
|
| 77 |
+
|
| 78 |
+
BUILDER_CONFIGS = [
|
| 79 |
+
WCEP10SummarizationConfig(
|
| 80 |
+
name="newline",
|
| 81 |
+
version=datasets.Version("1.0.0"),
|
| 82 |
+
description="WCEP10 dataset for summarization, concat sections",
|
| 83 |
+
),
|
| 84 |
+
WCEP10SummarizationConfig(
|
| 85 |
+
name="roberta",
|
| 86 |
+
version=datasets.Version("1.0.0"),
|
| 87 |
+
description="WCEP10 dataset for summarization, document",
|
| 88 |
+
),
|
| 89 |
+
WCEP10SummarizationConfig(
|
| 90 |
+
name="bert",
|
| 91 |
+
version=datasets.Version("1.0.0"),
|
| 92 |
+
description="WCEP10 dataset for summarization, document",
|
| 93 |
+
),
|
| 94 |
+
WCEP10SummarizationConfig(
|
| 95 |
+
name="list",
|
| 96 |
+
version=datasets.Version("1.0.0"),
|
| 97 |
+
description="WCEP10 dataset for summarization, document",
|
| 98 |
+
),
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
DEFAULT_CONFIG_NAME = "roberta"
|
| 102 |
+
|
| 103 |
+
def _info(self):
|
| 104 |
+
# Should return a datasets.DatasetInfo object
|
| 105 |
+
return datasets.DatasetInfo(
|
| 106 |
+
description=_DESCRIPTION,
|
| 107 |
+
features=datasets.Features(
|
| 108 |
+
{
|
| 109 |
+
_ARTICLE: datasets.Sequence(datasets.Value("string")) if self.config.name == "list" else datasets.Value("string"),
|
| 110 |
+
_ABSTRACT: datasets.Value("string"),
|
| 111 |
+
#"id": datasets.Value("string"),
|
| 112 |
+
}
|
| 113 |
+
),
|
| 114 |
+
supervised_keys=None,
|
| 115 |
+
homepage="https://github.com/allenai/PRIMER",
|
| 116 |
+
citation=_CITATION,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def _split_generators(self, dl_manager):
|
| 120 |
+
|
| 121 |
+
train_path = dl_manager.download_and_extract(self._TRAIN_FILE) + "/train.txt"
|
| 122 |
+
val_path = dl_manager.download_and_extract(self._VAL_FILE) + "/val.txt"
|
| 123 |
+
test_path = dl_manager.download_and_extract(self._TEST_FILE) + "/test.txt"
|
| 124 |
+
|
| 125 |
+
return [
|
| 126 |
+
datasets.SplitGenerator(
|
| 127 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
|
| 128 |
+
),
|
| 129 |
+
datasets.SplitGenerator(
|
| 130 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
|
| 131 |
+
),
|
| 132 |
+
datasets.SplitGenerator(
|
| 133 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
|
| 134 |
+
),
|
| 135 |
+
]
|
| 136 |
+
|
| 137 |
+
def _generate_examples(self, filepath):
|
| 138 |
+
"""Generate WCEP10Summarization examples."""
|
| 139 |
+
if self.config.name == "newline":
|
| 140 |
+
join_ = "\n"
|
| 141 |
+
elif self.config.name == "roberta":
|
| 142 |
+
join_ = "</s>"
|
| 143 |
+
elif self.config.name == "bert":
|
| 144 |
+
join_ = "[SEP]"
|
| 145 |
+
|
| 146 |
+
with open(filepath, encoding="utf-8") as f:
|
| 147 |
+
for id_, row in enumerate(f):
|
| 148 |
+
data = json.loads(row)
|
| 149 |
+
|
| 150 |
+
"""
|
| 151 |
+
'summary': str,
|
| 152 |
+
'document': List[str],
|
| 153 |
+
"""
|
| 154 |
+
document = data["document"]
|
| 155 |
+
if self.config.name != "list":
|
| 156 |
+
document = join_.join(document)
|
| 157 |
+
summary = data["summary"]
|
| 158 |
+
yield id_, {"document": document, "summary": summary}
|
test.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c9f4e660b21b5d581eaf05c7f75ee2a8597ec9e4ac030d43b07442bf0993682
|
| 3 |
+
size 6850444
|
train.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24e1d9989a38da9707471ec5c47d89ecd192eb34b5f678ecdc7ce2dae9411087
|
| 3 |
+
size 55467667
|
val.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd23d8bdcb486abb41f7a14269ae472b38dcaccc108837a29c8dd9fd1cb90aec
|
| 3 |
+
size 7149706
|