| # import torch.utils.data as data | |
| # from PIL import Image | |
| # import torchvision.transforms as transforms | |
| # import numpy as np | |
| # import random | |
| # | |
| # | |
| # class BaseDataset(data.Dataset): | |
| # def __init__(self): | |
| # super(BaseDataset, self).__init__() | |
| # | |
| # @staticmethod | |
| # def modify_commandline_options(parser, is_train): | |
| # parser.add_argument('--random_crop', default=False, | |
| # help='Randomize Crop Images') | |
| # return parser | |
| # | |
| # def initialize(self, opt): | |
| # pass | |
| # | |
| # | |
| # def get_params(opt, size): | |
| # w, h = size | |
| # new_h = h | |
| # new_w = w | |
| # if opt.preprocess_mode == 'resize_and_crop': | |
| # new_h = new_w = opt.load_size | |
| # elif opt.preprocess_mode == 'scale_width_and_crop': | |
| # new_w = opt.load_size | |
| # new_h = opt.load_size * h // w | |
| # elif opt.preprocess_mode == 'scale_shortside_and_crop': | |
| # ss, ls = min(w, h), max(w, h) # shortside and longside | |
| # width_is_shorter = w == ss | |
| # ls = int(opt.load_size * ls / ss) | |
| # new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss) | |
| # | |
| # x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) | |
| # y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) | |
| # | |
| # flip = random.random() > 0.5 | |
| # return {'crop_pos': (x, y), 'flip': flip} | |
| # | |
| # | |
| # def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True): | |
| # transform_list = [] | |
| # if 'resize' in opt.preprocess_mode: | |
| # osize = [opt.load_size, opt.load_size] | |
| # transform_list.append(transforms.Resize(osize, interpolation=method)) | |
| # elif 'scale_width' in opt.preprocess_mode: | |
| # transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) | |
| # elif 'scale_shortside' in opt.preprocess_mode: | |
| # transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method))) | |
| # | |
| # if 'crop' in opt.preprocess_mode: | |
| # transform_list.append(transforms.RandomCrop(opt.crop_size)) | |
| # | |
| # if opt.preprocess_mode == 'none': | |
| # base = 32 | |
| # transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) | |
| # | |
| # if opt.preprocess_mode == 'fixed': | |
| # w = opt.crop_size | |
| # h = round(opt.crop_size / opt.aspect_ratio) | |
| # transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method))) | |
| # | |
| # if opt.isTrain and not opt.no_flip: | |
| # transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) | |
| # | |
| # if toTensor: | |
| # transform_list += [transforms.ToTensor()] | |
| # | |
| # if normalize: | |
| # transform_list += [transforms.Normalize((0.5, 0.5, 0.5), | |
| # (0.5, 0.5, 0.5))] | |
| # | |
| # return transforms.Compose(transform_list) | |
| # | |
| # | |
| # def normalize(): | |
| # return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
| # | |
| # | |
| # def __resize(img, w, h, method=Image.BICUBIC): | |
| # return img.resize((w, h), method) | |
| # | |
| # | |
| # def __make_power_2(img, base, method=Image.BICUBIC): | |
| # ow, oh = img.size | |
| # h = int(round(oh / base) * base) | |
| # w = int(round(ow / base) * base) | |
| # if (h == oh) and (w == ow): | |
| # return img | |
| # return img.resize((w, h), method) | |
| # | |
| # | |
| # def __scale_width(img, target_width, method=Image.BICUBIC): | |
| # ow, oh = img.size | |
| # if (ow == target_width): | |
| # return img | |
| # w = target_width | |
| # h = int(target_width * oh / ow) | |
| # return img.resize((w, h), method) | |
| # | |
| # | |
| # def __scale_shortside(img, target_width, method=Image.BICUBIC): | |
| # ow, oh = img.size | |
| # ss, ls = min(ow, oh), max(ow, oh) # shortside and longside | |
| # width_is_shorter = ow == ss | |
| # if (ss == target_width): | |
| # return img | |
| # ls = int(target_width * ls / ss) | |
| # nw, nh = (ss, ls) if width_is_shorter else (ls, ss) | |
| # return img.resize((nw, nh), method) | |
| # | |
| # | |
| # def __crop(img, pos, size): | |
| # ow, oh = img.size | |
| # x1, y1 = pos | |
| # tw = th = size | |
| # return img.crop((x1, y1, x1 + tw, y1 + th)) | |
| # | |
| # | |
| # def __flip(img, flip): | |
| # if flip: | |
| # return img.transpose(Image.FLIP_LEFT_RIGHT) | |
| # return img | |
| import torch.utils.data as data | |
| from PIL import Image | |
| import torchvision.transforms as transforms | |
| import numpy as np | |
| import random | |
| class BaseDataset(data.Dataset): | |
| def __init__(self): | |
| super(BaseDataset, self).__init__() | |
| def modify_commandline_options(parser, is_train): | |
| return parser | |
| def initialize(self, opt): | |
| pass | |
| def get_params(opt, size): | |
| w, h = size | |
| new_h = h | |
| new_w = w | |
| if opt.preprocess_mode == 'resize_and_crop': | |
| new_h = new_w = opt.load_size | |
| elif opt.preprocess_mode == 'scale_width_and_crop': | |
| new_w = opt.load_size | |
| new_h = opt.load_size * h // w | |
| elif opt.preprocess_mode == 'scale_shortside_and_crop': | |
| ss, ls = min(w, h), max(w, h) # shortside and longside | |
| width_is_shorter = w == ss | |
| ls = int(opt.load_size * ls / ss) | |
| new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss) | |
| x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) | |
| y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) | |
| flip = random.random() > 0.5 | |
| return {'crop_pos': (x, y), 'flip': flip} | |
| def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True): | |
| transform_list = [] | |
| if 'resize' in opt.preprocess_mode: | |
| osize = [opt.load_size, opt.load_size] | |
| transform_list.append(transforms.Resize(osize, interpolation=method)) | |
| elif 'scale_width' in opt.preprocess_mode: | |
| transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method))) | |
| elif 'scale_shortside' in opt.preprocess_mode: | |
| transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method))) | |
| if 'crop' in opt.preprocess_mode: | |
| transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) | |
| if opt.preprocess_mode == 'none': | |
| base = 32 | |
| transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) | |
| if opt.preprocess_mode == 'fixed': | |
| w = opt.crop_size | |
| h = round(opt.crop_size / opt.aspect_ratio) | |
| transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method))) | |
| if opt.isTrain and not opt.no_flip: | |
| transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) | |
| if toTensor: | |
| transform_list += [transforms.ToTensor()] | |
| if normalize: | |
| transform_list += [transforms.Normalize((0.5, 0.5, 0.5), | |
| (0.5, 0.5, 0.5))] | |
| return transforms.Compose(transform_list) | |
| def normalize(): | |
| return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
| def __resize(img, w, h, method=Image.BICUBIC): | |
| return img.resize((w, h), method) | |
| def __make_power_2(img, base, method=Image.BICUBIC): | |
| ow, oh = img.size | |
| h = int(round(oh / base) * base) | |
| w = int(round(ow / base) * base) | |
| if (h == oh) and (w == ow): | |
| return img | |
| return img.resize((w, h), method) | |
| def __scale_width(img, target_width, method=Image.BICUBIC): | |
| ow, oh = img.size | |
| if (ow == target_width): | |
| return img | |
| w = target_width | |
| h = int(target_width * oh / ow) | |
| return img.resize((w, h), method) | |
| def __scale_shortside(img, target_width, method=Image.BICUBIC): | |
| ow, oh = img.size | |
| ss, ls = min(ow, oh), max(ow, oh) # shortside and longside | |
| width_is_shorter = ow == ss | |
| if (ss == target_width): | |
| return img | |
| ls = int(target_width * ls / ss) | |
| nw, nh = (ss, ls) if width_is_shorter else (ls, ss) | |
| return img.resize((nw, nh), method) | |
| def __crop(img, pos, size): | |
| ow, oh = img.size | |
| x1, y1 = pos | |
| tw = th = size | |
| return img.crop((x1, y1, x1 + tw, y1 + th)) | |
| def __flip(img, flip): | |
| if flip: | |
| return img.transpose(Image.FLIP_LEFT_RIGHT) | |
| return img |