Datasets:
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (b26034a708655e76c45699e50055e0faa01ea205)
- Delete loading script (ceec078df1da90e04973644a60ab20144f97500a)
- README.md +10 -5
- covid_qa_deepset.py +0 -127
- covid_qa_deepset/train-00000-of-00001.parquet +3 -0
README.md
CHANGED
|
@@ -18,9 +18,9 @@ task_categories:
|
|
| 18 |
task_ids:
|
| 19 |
- closed-domain-qa
|
| 20 |
- extractive-qa
|
| 21 |
-
paperswithcode_id: null
|
| 22 |
pretty_name: COVID-QA
|
| 23 |
dataset_info:
|
|
|
|
| 24 |
features:
|
| 25 |
- name: document_id
|
| 26 |
dtype: int32
|
|
@@ -38,13 +38,18 @@ dataset_info:
|
|
| 38 |
dtype: string
|
| 39 |
- name: answer_start
|
| 40 |
dtype: int32
|
| 41 |
-
config_name: covid_qa_deepset
|
| 42 |
splits:
|
| 43 |
- name: train
|
| 44 |
-
num_bytes:
|
| 45 |
num_examples: 2019
|
| 46 |
-
download_size:
|
| 47 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
---
|
| 49 |
|
| 50 |
|
|
|
|
| 18 |
task_ids:
|
| 19 |
- closed-domain-qa
|
| 20 |
- extractive-qa
|
|
|
|
| 21 |
pretty_name: COVID-QA
|
| 22 |
dataset_info:
|
| 23 |
+
config_name: covid_qa_deepset
|
| 24 |
features:
|
| 25 |
- name: document_id
|
| 26 |
dtype: int32
|
|
|
|
| 38 |
dtype: string
|
| 39 |
- name: answer_start
|
| 40 |
dtype: int32
|
|
|
|
| 41 |
splits:
|
| 42 |
- name: train
|
| 43 |
+
num_bytes: 65151242
|
| 44 |
num_examples: 2019
|
| 45 |
+
download_size: 2274275
|
| 46 |
+
dataset_size: 65151242
|
| 47 |
+
configs:
|
| 48 |
+
- config_name: covid_qa_deepset
|
| 49 |
+
data_files:
|
| 50 |
+
- split: train
|
| 51 |
+
path: covid_qa_deepset/train-*
|
| 52 |
+
default: true
|
| 53 |
---
|
| 54 |
|
| 55 |
|
covid_qa_deepset.py
DELETED
|
@@ -1,127 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""COVID-QA: A Question Answering Dataset for COVID-19."""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import json
|
| 19 |
-
|
| 20 |
-
import datasets
|
| 21 |
-
from datasets.tasks import QuestionAnsweringExtractive
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
logger = datasets.logging.get_logger(__name__)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
_CITATION = """\
|
| 28 |
-
@inproceedings{moller2020covid,
|
| 29 |
-
title={COVID-QA: A Question Answering Dataset for COVID-19},
|
| 30 |
-
author={M{\"o}ller, Timo and Reina, Anthony and Jayakumar, Raghavan and Pietsch, Malte},
|
| 31 |
-
booktitle={Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020},
|
| 32 |
-
year={2020}
|
| 33 |
-
}
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
# You can copy an official description
|
| 37 |
-
_DESCRIPTION = """\
|
| 38 |
-
COVID-QA is a Question Answering dataset consisting of 2,019 question/answer pairs annotated by volunteer biomedical \
|
| 39 |
-
experts on scientific articles related to COVID-19.
|
| 40 |
-
"""
|
| 41 |
-
|
| 42 |
-
_HOMEPAGE = "https://github.com/deepset-ai/COVID-QA"
|
| 43 |
-
|
| 44 |
-
_LICENSE = "Apache License 2.0"
|
| 45 |
-
|
| 46 |
-
_URL = "https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/question-answering/"
|
| 47 |
-
_URLs = {"covid_qa_deepset": _URL + "COVID-QA.json"}
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
class CovidQADeepset(datasets.GeneratorBasedBuilder):
|
| 51 |
-
VERSION = datasets.Version("1.0.0")
|
| 52 |
-
|
| 53 |
-
BUILDER_CONFIGS = [
|
| 54 |
-
datasets.BuilderConfig(name="covid_qa_deepset", version=VERSION, description="COVID-QA deepset"),
|
| 55 |
-
]
|
| 56 |
-
|
| 57 |
-
def _info(self):
|
| 58 |
-
features = datasets.Features(
|
| 59 |
-
{
|
| 60 |
-
"document_id": datasets.Value("int32"),
|
| 61 |
-
"context": datasets.Value("string"),
|
| 62 |
-
"question": datasets.Value("string"),
|
| 63 |
-
"is_impossible": datasets.Value("bool"),
|
| 64 |
-
"id": datasets.Value("int32"),
|
| 65 |
-
"answers": datasets.features.Sequence(
|
| 66 |
-
{
|
| 67 |
-
"text": datasets.Value("string"),
|
| 68 |
-
"answer_start": datasets.Value("int32"),
|
| 69 |
-
}
|
| 70 |
-
),
|
| 71 |
-
}
|
| 72 |
-
)
|
| 73 |
-
return datasets.DatasetInfo(
|
| 74 |
-
description=_DESCRIPTION,
|
| 75 |
-
features=features,
|
| 76 |
-
supervised_keys=None,
|
| 77 |
-
homepage=_HOMEPAGE,
|
| 78 |
-
license=_LICENSE,
|
| 79 |
-
citation=_CITATION,
|
| 80 |
-
task_templates=[
|
| 81 |
-
QuestionAnsweringExtractive(
|
| 82 |
-
question_column="question", context_column="context", answers_column="answers"
|
| 83 |
-
)
|
| 84 |
-
],
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
def _split_generators(self, dl_manager):
|
| 88 |
-
url = _URLs[self.config.name]
|
| 89 |
-
downloaded_filepath = dl_manager.download_and_extract(url)
|
| 90 |
-
|
| 91 |
-
return [
|
| 92 |
-
datasets.SplitGenerator(
|
| 93 |
-
name=datasets.Split.TRAIN,
|
| 94 |
-
gen_kwargs={"filepath": downloaded_filepath},
|
| 95 |
-
),
|
| 96 |
-
]
|
| 97 |
-
|
| 98 |
-
def _generate_examples(self, filepath):
|
| 99 |
-
"""This function returns the examples in the raw (text) form."""
|
| 100 |
-
logger.info("generating examples from = %s", filepath)
|
| 101 |
-
with open(filepath, encoding="utf-8") as f:
|
| 102 |
-
covid_qa = json.load(f)
|
| 103 |
-
for article in covid_qa["data"]:
|
| 104 |
-
for paragraph in article["paragraphs"]:
|
| 105 |
-
context = paragraph["context"].strip()
|
| 106 |
-
document_id = paragraph["document_id"]
|
| 107 |
-
for qa in paragraph["qas"]:
|
| 108 |
-
question = qa["question"].strip()
|
| 109 |
-
is_impossible = qa["is_impossible"]
|
| 110 |
-
id_ = qa["id"]
|
| 111 |
-
|
| 112 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
| 113 |
-
answers = [answer["text"].strip() for answer in qa["answers"]]
|
| 114 |
-
|
| 115 |
-
# Features currently used are "context", "question", and "answers".
|
| 116 |
-
# Others are extracted here for the ease of future expansions.
|
| 117 |
-
yield id_, {
|
| 118 |
-
"document_id": document_id,
|
| 119 |
-
"context": context,
|
| 120 |
-
"question": question,
|
| 121 |
-
"is_impossible": is_impossible,
|
| 122 |
-
"id": id_,
|
| 123 |
-
"answers": {
|
| 124 |
-
"answer_start": answer_starts,
|
| 125 |
-
"text": answers,
|
| 126 |
-
},
|
| 127 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
covid_qa_deepset/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1662a83af1bd1fc14bf86af1c60386ad8c836ec26896b189765ffe0c92836df
|
| 3 |
+
size 2274275
|