Upload freezestuff.py
Browse files- freezestuff.py +155 -0
freezestuff.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
freeze_preset_selector = 5 # Change this
|
| 2 |
+
# 0: no freeze
|
| 3 |
+
# 1 freeze: phone embeddings, first text enc attention layer, pos encoder pre-processing layer
|
| 4 |
+
# 2: freeze: phone embeddings, first 2 text enc attention layers, pos encoder pre-processing & first few layers, and initial layers of decoder.
|
| 5 |
+
# 3: freeze: only phone embeddings
|
| 6 |
+
# 4: aggressive - freeze phone, all of text enc main encoder, pos encoder pre-processing, first 4 layers in pos encoder. adapts decoder, flow, and later pos encoder layers.
|
| 7 |
+
# 5: freeze phone embeddings, first 2 text enc attention layers, pos encoder pre-processing, first layers in pos encoder, and first decoder upsample block
|
| 8 |
+
|
| 9 |
+
net_g_mod = net_g.module if hasattr(net_g, 'module') else net_g
|
| 10 |
+
|
| 11 |
+
# Default all parameters to trainable, then selectively freeze
|
| 12 |
+
for param in net_g_mod.parameters():
|
| 13 |
+
param.requires_grad = True
|
| 14 |
+
|
| 15 |
+
active_freezing = False
|
| 16 |
+
|
| 17 |
+
if freeze_preset_selector == 0:
|
| 18 |
+
print("no layer freeze")
|
| 19 |
+
active_freezing = False
|
| 20 |
+
elif freeze_preset_selector == 1:
|
| 21 |
+
print("freeze: phone embeddings, first text enc attention layer, pos encoder pre-processing")
|
| 22 |
+
active_freezing = True
|
| 23 |
+
# phone embeddings
|
| 24 |
+
for param in net_g_mod.enc_p.emb_phone.parameters():
|
| 25 |
+
param.requires_grad = False
|
| 26 |
+
|
| 27 |
+
# text enc attention layer
|
| 28 |
+
for i, layer in enumerate(net_g_mod.enc_p.encoder.attn_layers):
|
| 29 |
+
if i < 1: # Only freeze first layer
|
| 30 |
+
for param in layer.parameters():
|
| 31 |
+
param.requires_grad = False
|
| 32 |
+
|
| 33 |
+
# pre-processing layer of pos encoder
|
| 34 |
+
for param in net_g_mod.enc_q.pre.parameters():
|
| 35 |
+
param.requires_grad = False
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
elif freeze_preset_selector == 2:
|
| 39 |
+
print("freeze: phone, first 2 text enc attention layers, pos encoder pre-processing & first few layers, and initial layers of decoder")
|
| 40 |
+
active_freezing = True
|
| 41 |
+
# phone embeddings
|
| 42 |
+
for param in net_g_mod.enc_p.emb_phone.parameters():
|
| 43 |
+
param.requires_grad = False
|
| 44 |
+
|
| 45 |
+
# first 2 text enc attention layers
|
| 46 |
+
for i, layer in enumerate(net_g_mod.enc_p.encoder.attn_layers):
|
| 47 |
+
if i < 2: # Freeze first two layers
|
| 48 |
+
for param in layer.parameters():
|
| 49 |
+
param.requires_grad = False
|
| 50 |
+
|
| 51 |
+
# pos encoder pre-processing and main encoder layers
|
| 52 |
+
for param in net_g_mod.enc_q.pre.parameters():
|
| 53 |
+
param.requires_grad = False
|
| 54 |
+
|
| 55 |
+
# first few layers in PosteriorEncoder
|
| 56 |
+
wavenet_module = net_g_mod.enc_q.enc
|
| 57 |
+
num_wavenet_layers_to_freeze = 2 #layers to freeze
|
| 58 |
+
|
| 59 |
+
for i, layer in enumerate(wavenet_module.in_layers):
|
| 60 |
+
if i < num_wavenet_layers_to_freeze:
|
| 61 |
+
for param in layer.parameters():
|
| 62 |
+
param.requires_grad = False
|
| 63 |
+
|
| 64 |
+
for i, layer in enumerate(wavenet_module.res_skip_layers):
|
| 65 |
+
if i < num_wavenet_layers_to_freeze:
|
| 66 |
+
for param in layer.parameters():
|
| 67 |
+
param.requires_grad = False
|
| 68 |
+
|
| 69 |
+
# 4. Freeze initial layers of the dec
|
| 70 |
+
for i, upsample_layer in enumerate(net_g_mod.dec.ups):
|
| 71 |
+
if i < 1: # upsampling layer
|
| 72 |
+
for param in upsample_layer.parameters():
|
| 73 |
+
param.requires_grad = False
|
| 74 |
+
|
| 75 |
+
elif freeze_preset_selector == 3:
|
| 76 |
+
print("freezing only phone embeddings")
|
| 77 |
+
active_freezing = True
|
| 78 |
+
# 1. Only freeze phone embeddings
|
| 79 |
+
for param in net_g_mod.enc_p.emb_phone.parameters():
|
| 80 |
+
param.requires_grad = False
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
elif freeze_preset_selector == 4:
|
| 84 |
+
print("freezing phone embeddings, all text enc main layers, pos encoder pre-processing, first 4 layers in pos encoder")
|
| 85 |
+
active_freezing = True
|
| 86 |
+
|
| 87 |
+
for param in net_g_mod.enc_p.emb_phone.parameters():
|
| 88 |
+
param.requires_grad = False
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
for param in net_g_mod.enc_p.encoder.parameters():
|
| 92 |
+
param.requires_grad = False
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
for param in net_g_mod.enc_q.pre.parameters():
|
| 96 |
+
param.requires_grad = False
|
| 97 |
+
|
| 98 |
+
wavenet_module_p4 = net_g_mod.enc_q.enc
|
| 99 |
+
num_wavenet_layers_to_freeze_p4 = 4
|
| 100 |
+
for i, layer in enumerate(wavenet_module_p4.in_layers):
|
| 101 |
+
if i < num_wavenet_layers_to_freeze_p4:
|
| 102 |
+
for param in layer.parameters():
|
| 103 |
+
param.requires_grad = False
|
| 104 |
+
for i, layer in enumerate(wavenet_module_p4.res_skip_layers):
|
| 105 |
+
if i < num_wavenet_layers_to_freeze_p4:
|
| 106 |
+
for param in layer.parameters():
|
| 107 |
+
param.requires_grad = False
|
| 108 |
+
|
| 109 |
+
elif freeze_preset_selector == 5:
|
| 110 |
+
print("freeze phone embedding, first 2 text enc attention layeer, pos encoder pre-processing, first 3 layers in pos encoder, decoder upsample block")
|
| 111 |
+
active_freezing = True
|
| 112 |
+
for param in net_g_mod.enc_p.emb_phone.parameters():
|
| 113 |
+
param.requires_grad = False
|
| 114 |
+
|
| 115 |
+
for i, layer in enumerate(net_g_mod.enc_p.encoder.attn_layers):
|
| 116 |
+
if i < 2:
|
| 117 |
+
for param in layer.parameters():
|
| 118 |
+
param.requires_grad = False
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
for param in net_g_mod.enc_q.pre.parameters():
|
| 122 |
+
param.requires_grad = False
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
wavenet_module_p5 = net_g_mod.enc_q.enc
|
| 126 |
+
num_wavenet_layers_to_freeze_p5 = 3
|
| 127 |
+
for i, layer in enumerate(wavenet_module_p5.in_layers):
|
| 128 |
+
if i < num_wavenet_layers_to_freeze_p5:
|
| 129 |
+
for param in layer.parameters():
|
| 130 |
+
param.requires_grad = False
|
| 131 |
+
for i, layer in enumerate(wavenet_module_p5.res_skip_layers):
|
| 132 |
+
if i < num_wavenet_layers_to_freeze_p5:
|
| 133 |
+
for param in layer.parameters():
|
| 134 |
+
param.requires_grad = False
|
| 135 |
+
|
| 136 |
+
for i, upsample_layer in enumerate(net_g_mod.dec.ups):
|
| 137 |
+
if i < 1:
|
| 138 |
+
for param in upsample_layer.parameters():
|
| 139 |
+
param.requires_grad = False
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
else:
|
| 143 |
+
raise ValueError(f"invalid preset")
|
| 144 |
+
|
| 145 |
+
if active_freezing:
|
| 146 |
+
total_params = 0
|
| 147 |
+
frozen_params = 0
|
| 148 |
+
for name, param in net_g_mod.named_parameters():
|
| 149 |
+
total_params += param.numel()
|
| 150 |
+
if not param.requires_grad:
|
| 151 |
+
frozen_params += param.numel()
|
| 152 |
+
print(f"Freezing applied (Preset {freeze_preset_selector}): {frozen_params:,}/{total_params:,} parameters frozen.")
|
| 153 |
+
else:
|
| 154 |
+
total_params = sum(p.numel() for p in net_g_mod.parameters())
|
| 155 |
+
print(f"no freezing applied")
|