--- license: apache-2.0 task_categories: - text-retrieval - question-answering tags: - rag - gdelt - knowledge-graphs - retrieval pretty_name: GDELT RAG Source Documents size_categories: - n<1K --- # GDELT RAG Source Documents ## Dataset Description This dataset contains source documents extracted from the research paper "Talking to GDELT Through Knowledge Graphs" (arXiv:2503.07584v3). The documents are used as the knowledge base for a Retrieval-Augmented Generation (RAG) system focused on GDELT (Global Database of Events, Language, and Tone) analysis. ### Dataset Summary - **Total Documents**: 38 pages - **Source**: Research paper on GDELT Knowledge Graphs - **Format**: PDF pages with extracted text and metadata - **Use Case**: RAG knowledge base for GDELT-related queries ### Data Fields - `page_content` (string): Extracted text content from the PDF page - `metadata` (dict): Document metadata including: - `title`: Paper title - `author`: Paper authors - `page`: Page number - `total_pages`: Total pages in source document - `file_path`: Original file path - `format`: Document format (PDF) - `producer`, `creator`: PDF metadata - Other PDF metadata fields ### Data Splits This dataset contains a single split with all 38 documents. ### Source Data The source material is the research paper: - **Title**: "Talking to GDELT Through Knowledge Graphs" - **Authors**: Audun Myers, Max Vargas, Sinan G. Aksoy, Cliff Joslyn, Benjamin Wilson, Lee Burke, Tom Grimes - **arXiv ID**: 2503.07584v3 ### Licensing This dataset is released under the Apache 2.0 license. ### Citation If you use this dataset, please cite the original paper: ``` @article{myers2025talking, title={Talking to GDELT Through Knowledge Graphs}, author={Myers, Audun and Vargas, Max and Aksoy, Sinan G and Joslyn, Cliff and Wilson, Benjamin and Burke, Lee and Grimes, Tom}, journal={arXiv preprint arXiv:2503.07584}, year={2025} } ``` ### Dataset Creation This dataset was created as part of the AI Engineering Bootcamp Cohort 8 certification challenge project.