File size: 2,382 Bytes
5277401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
task_categories:
  - tabular-classification
tags:
  - nigeria
  - banking
  - finance
  - fraud-detection
  - synthetic
  - african-data
language:
  - en
size_categories:
  - 1M<n<10M
---

# Agent Network (Super Agents, Master Agents, Sub-Agents)

## Dataset Description

Nigerian banking agents and their transactions with fraud labels

This is a **production-grade synthetic dataset** with authentic Nigerian banking context, designed for agent fraud detection, network optimization, and commission management.

### Key Features

- 🇳🇬 **Nigerian Context**: Real bank names, states, demographics
- 📊 **ML-Ready Labels**: Fraud flag (2.5% prevalence)
- âš¡ **Large Scale**: 2,000,000 rows
- 🎯 **Realistic Distributions**: Lognormal volumes, agent type hierarchies, commission structures
- 📅 **Temporal Coverage**: 2023-01-01 to 2024-12-31

## Dataset Structure

### Splits

- **Train**: 1,400,000 rows (70%)
- **Validation**: 300,000 rows (15%)
- **Test**: 300,000 rows (15%)

### Schema

**Key columns**: agent_id, agent_name, state, agent_type (super/master/sub), monthly_volume_ngn, monthly_transactions, commission_rate, kyc_tier, fraud_flag

## Usage

```python
from datasets import load_dataset

# Load full dataset
dataset = load_dataset("electricsheepafrica/nigerian_agent_network")

# Load specific split
train_data = load_dataset("electricsheepafrica/nigerian_agent_network", split="train")
```

## Labels

- **Type**: Fraud flag (2.5% prevalence)
- **Use Case**: agent fraud detection, network optimization, and commission management

## Nigerian Context

Nigerian agent banking network structure, super agent chains, rural agent distributions across 37 states, KYC tier distributions, and fraud patterns including float diversion and fake transactions.

## Citation

```bibtex
@dataset{nigerian_banking_agent_network,
  title = {Nigerian Agent Network (Super Agents, Master Agents, Sub-Agents)},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/electricsheepafrica/nigerian_agent_network}}
}
```

## License

Apache 2.0 - Free for commercial and research use.

## Contact

- **Organization**: Electric Sheep Africa
- **Collection**: [Nigeria Banking & Finance Datasets](https://huggingface.co/collections/electricsheepafrica/nigeria-banking)