File size: 2,357 Bytes
2a3f1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
task_categories:
  - tabular-classification
tags:
  - nigeria
  - banking
  - finance
  - fraud-detection
  - synthetic
  - african-data
language:
  - en
size_categories:
  - 1M<n<10M
---

# NIP (Nigeria Inter-Bank Payment) Transfers

## Dataset Description

Nigerian Inter-Bank Payment (NIP) transfers with fraud labels

This is a **production-grade synthetic dataset** with authentic Nigerian banking context, designed for fraud detection, payment anomaly detection, and real-time transaction monitoring.

### Key Features

- πŸ‡³πŸ‡¬ **Nigerian Context**: Real bank names, states, demographics
- πŸ“Š **ML-Ready Labels**: Fraud flag (1.0% prevalence)
- ⚑ **Large Scale**: 3,000,000 rows
- 🎯 **Realistic Distributions**: Lognormal amounts, temporal patterns, cross-bank transfers
- πŸ“… **Temporal Coverage**: 2023-01-01 to 2024-12-31

## Dataset Structure

### Splits

- **Train**: 2,100,000 rows (70%)
- **Validation**: 450,000 rows (15%)
- **Test**: 450,000 rows (15%)

### Schema

**Key columns**: transfer_id, timestamp, sender/beneficiary accounts & banks, amount_ngn, transfer_type, state, session_id, status, response_time_ms, fraud_flag

## Usage

```python
from datasets import load_dataset

# Load full dataset
dataset = load_dataset("electricsheepafrica/nigerian_nip_transfers")

# Load specific split
train_data = load_dataset("electricsheepafrica/nigerian_nip_transfers", split="train")
```

## Labels

- **Type**: Fraud flag (1.0% prevalence)
- **Use Case**: fraud detection, payment anomaly detection, and real-time transaction monitoring

## Nigerian Context

Includes 14 Nigerian banks (Access, GTBank, UBA, Zenith, etc.), 37 states with population weighting, and authentic NIP transfer patterns including P2P, business, and salary transfers.

## Citation

```bibtex
@dataset{nigerian_banking_nip_transfers,
  title = {Nigerian NIP (Nigeria Inter-Bank Payment) Transfers},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/electricsheepafrica/nigerian_nip_transfers}}
}
```

## License

Apache 2.0 - Free for commercial and research use.

## Contact

- **Organization**: Electric Sheep Africa
- **Collection**: [Nigeria Banking & Finance Datasets](https://huggingface.co/collections/electricsheepafrica/nigeria-banking)