Dataset Viewer
Auto-converted to Parquet
id
stringlengths
12
12
date
stringdate
2022-01-01 00:00:00
2025-03-30 00:00:00
state
stringclasses
37 values
value
float64
4.8
100
category
stringclasses
3 values
REC-00619836
2022-07-26
Bauchi
70.5
C
REC-00092808
2023-06-09
Kano
45.9
B
REC-00285056
2024-09-07
Borno
47.4
A
REC-00498469
2025-03-25
Bayelsa
100
A
REC-00201270
2022-07-11
Jigawa
84.2
B
REC-00391011
2023-08-17
Yobe
66
C
REC-00263651
2025-01-25
Benue
62.1
A
REC-00927612
2024-11-07
Plateau
63.1
A
REC-00036383
2025-02-08
Gombe
80.2
B
REC-00184253
2024-05-05
Yobe
82
A
REC-00434087
2024-10-26
Bayelsa
98.3
A
REC-00934139
2022-06-29
Taraba
69
C
REC-00051900
2023-05-06
Jigawa
59.1
B
REC-00162566
2022-09-30
Lagos
67.9
B
REC-00564076
2024-09-29
Kano
66.4
B
REC-00053268
2023-03-01
Lagos
63
A
REC-00512222
2025-02-06
Taraba
53.1
A
REC-00713705
2024-01-30
Niger
55.4
B
REC-00224166
2024-12-17
Ekiti
82.6
C
REC-00025361
2024-09-14
Edo
95.1
B
REC-00486904
2022-12-31
Ogun
87.6
A
REC-00158749
2024-11-25
Lagos
84.8
C
REC-00704272
2024-07-12
Anambra
77.9
B
REC-00933402
2024-03-14
Sokoto
75.1
A
REC-00857284
2022-11-12
Akwa Ibom
58.6
A
REC-00954395
2023-07-29
Kano
77.2
B
REC-00000516
2024-12-07
Borno
67.2
A
REC-00025399
2022-02-09
Imo
89
C
REC-00267738
2022-04-24
Abia
72.9
C
REC-00369326
2022-10-04
Delta
51.9
B
REC-00463288
2023-09-09
Abia
91.6
A
REC-00483828
2024-11-18
Ebonyi
63
B
REC-00942215
2024-08-25
Osun
63.6
B
REC-00812215
2022-09-15
Kaduna
39.3
A
REC-00301071
2022-10-17
Kwara
74.7
B
REC-00892036
2022-09-18
Oyo
57.9
A
REC-00940878
2024-12-11
Niger
84.2
B
REC-00564160
2022-02-25
Osun
100
A
REC-00767393
2022-09-24
Taraba
60.5
A
REC-00865028
2022-08-24
Yobe
61.4
C
REC-00909210
2022-01-06
Ondo
67.1
C
REC-00569349
2023-08-23
Benue
81.6
C
REC-00446147
2024-06-28
Imo
62.6
B
REC-00832975
2023-05-28
Oyo
76.8
C
REC-00662812
2024-01-08
Benue
72
A
REC-00527153
2024-12-10
Jigawa
57.4
A
REC-00680492
2024-09-21
Oyo
76.3
C
REC-00210228
2024-08-08
Plateau
78.3
A
REC-00944677
2022-01-15
Niger
80.7
C
REC-00098029
2024-08-21
Enugu
82.9
A
REC-00283348
2022-11-22
Benue
96
A
REC-00198292
2022-05-24
Benue
58.8
A
REC-00933580
2023-01-24
Kano
67.9
C
REC-00700989
2023-01-08
Kogi
67.4
B
REC-00412309
2023-08-01
Ondo
64.2
A
REC-00277359
2022-12-25
Edo
59.6
C
REC-00099722
2023-07-05
Gombe
62.2
B
REC-00686821
2022-07-29
Benue
92.8
A
REC-00058622
2024-07-14
Nasarawa
89
A
REC-00925932
2025-01-11
Bauchi
59.1
A
REC-00968216
2023-09-18
Gombe
97.7
B
REC-00806757
2023-05-26
Edo
100
B
REC-00671634
2023-09-04
Rivers
62.6
B
REC-00952009
2023-01-24
Kogi
81.7
C
REC-00645693
2023-10-26
Kaduna
92
C
REC-00015814
2024-07-25
Katsina
93.7
B
REC-00482445
2022-07-23
Anambra
61.7
A
REC-00801793
2022-03-16
Cross River
74.7
C
REC-00161002
2022-04-28
Ebonyi
64.7
B
REC-00632233
2023-07-26
Cross River
79.3
B
REC-00905837
2023-10-29
Enugu
81.6
A
REC-00134883
2022-02-20
Sokoto
69.4
C
REC-00972111
2023-01-08
Kwara
80.6
A
REC-00307668
2024-06-10
Yobe
49.5
C
REC-00945651
2022-12-16
Kebbi
61.3
C
REC-00688426
2025-01-24
Abia
52.6
B
REC-00861881
2022-04-10
Bauchi
83
B
REC-00965091
2024-04-15
Plateau
41.3
A
REC-00172479
2023-07-30
Kebbi
82.2
B
REC-00301340
2022-01-13
Ekiti
99.1
A
REC-00819638
2023-05-04
Anambra
70
C
REC-00987469
2022-12-16
Kaduna
79.1
C
REC-00696118
2023-01-16
Cross River
62.3
C
REC-00332592
2025-01-10
Lagos
57.3
A
REC-00393835
2023-10-08
Bauchi
91
A
REC-00140994
2025-01-16
Bayelsa
73.5
A
REC-00173991
2024-12-25
Borno
23.9
C
REC-00254815
2024-06-18
Cross River
62.8
A
REC-00891453
2024-12-30
Cross River
57.9
C
REC-00425800
2024-02-01
Oyo
84.2
A
REC-00592690
2024-01-05
Ogun
67.7
B
REC-00447922
2023-02-28
Kwara
62.2
C
REC-00736540
2024-03-31
Ondo
78.4
A
REC-00074775
2024-02-28
Enugu
39.7
C
REC-00232063
2022-03-15
Borno
68.3
A
REC-00359645
2024-03-22
Zamfara
50.1
A
REC-00439836
2025-03-22
Gombe
90.8
A
REC-00537433
2024-02-08
Yobe
83.4
B
REC-00009887
2024-02-19
Plateau
63.4
C
REC-00004836
2025-02-01
Kaduna
67.6
B
End of preview. Expand in Data Studio

Nigeria Education – Student Loans

Dataset Description

Synthetic Higher Education data for Nigeria education sector.

Category: Higher Education
Rows: 100,000
Format: CSV, Parquet
License: MIT
Synthetic: Yes (generated using reference data from WAEC, JAMB, UBEC, NBS, UNESCO)

Dataset Structure

Schema

  • id: string
  • date: string
  • state: string
  • value: float
  • category: string

Sample Data

| id           | date       | state   |   value | category   |
|:-------------|:-----------|:--------|--------:|:-----------|
| REC-00619836 | 2022-07-26 | Bauchi  |    70.5 | C          |
| REC-00092808 | 2023-06-09 | Kano    |    45.9 | B          |
| REC-00285056 | 2024-09-07 | Borno   |    47.4 | A          |
| REC-00498469 | 2025-03-25 | Bayelsa |   100   | A          |
| REC-00201270 | 2022-07-11 | Jigawa  |    84.2 | B          |

Data Generation Methodology

This dataset was synthetically generated using:

  1. Reference Sources:

    • WAEC (West African Examinations Council) - exam results, pass rates, grade distributions
    • JAMB (Joint Admissions and Matriculation Board) - UTME scores, subject combinations
    • UBEC (Universal Basic Education Commission) - enrollment, infrastructure, teacher data
    • NBS (National Bureau of Statistics) - education surveys, literacy rates
    • UNESCO - Nigeria education statistics, enrollment ratios
    • UNICEF - Out-of-school children, gender parity indices
  2. Domain Constraints:

    • WAEC grading system (A1-F9) with official score ranges
    • JAMB UTME scoring (0-400 points, 4 subjects)
    • Nigerian curriculum structure (Primary, JSS, SSS)
    • Academic calendar (3 terms: Sep-Dec, Jan-Apr, May-Jul)
    • Regional disparities (North-South education gap)
    • Gender parity indices by region and level
  3. Quality Assurance:

    • Distribution testing (WAEC grade distributions match national patterns)
    • Correlation validation (attendance-performance, teacher quality-outcomes)
    • Causal consistency (educational outcome models)
    • Multi-scale coherence (student β†’ school β†’ state aggregations)
    • Ethical considerations (representative, unbiased, privacy-preserving)

See QUALITY_ASSURANCE.md in the repository for full methodology.

Use Cases

  • Machine Learning: Performance prediction, dropout forecasting, admission modeling, resource allocation
  • Policy Analysis: Education program evaluation, gender parity assessment, regional disparity studies
  • Research: Teacher effectiveness, infrastructure impact, exam performance patterns
  • Education Planning: School placement, teacher deployment, budget allocation

Limitations

  • Synthetic data: While grounded in real distributions from WAEC/JAMB/UBEC, individual records are not real observations
  • Simplified dynamics: Some complex interactions (e.g., peer effects, teacher-student matching) are simplified
  • Temporal scope: Covers 2022-2025; may not reflect longer-term trends or future policy changes
  • Spatial resolution: State/LGA level; does not capture micro-level heterogeneity within localities

Citation

If you use this dataset, please cite:

@dataset{nigeria_education_2025,
  title = {Nigeria Education – Student Loans},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_education_student_loans}
}

Related Datasets

This dataset is part of the Nigeria Education Sector collection:

Contact

For questions, feedback, or collaboration:

Changelog

Version 1.0.0 (October 2025)

  • Initial release
  • 100,000 synthetic records
  • Quality-assured using WAEC/JAMB/UBEC/NBS reference data
Downloads last month
16

Collection including electricsheepafrica/nigerian_education_student_loans