Dataset Viewer
Auto-converted to Parquet
id
stringlengths
12
12
date
stringdate
2022-01-01 00:00:00
2025-03-30 00:00:00
state
stringclasses
37 values
value
float64
6.3
100
category
stringclasses
3 values
REC-00971631
2022-06-09
Adamawa
76.6
B
REC-00469788
2022-12-18
Osun
74.6
A
REC-00714570
2022-09-13
Zamfara
49.3
C
REC-00543891
2024-06-24
Edo
80.5
A
REC-00842840
2024-06-11
Oyo
57.4
A
REC-00622229
2023-02-11
Edo
65.3
C
REC-00092927
2024-09-11
Jigawa
36.7
A
REC-00231884
2024-07-14
Nasarawa
36.2
A
REC-00654448
2022-08-06
Ekiti
40.8
C
REC-00538344
2022-03-02
Lagos
60.3
C
REC-00404905
2024-09-04
Kaduna
57
C
REC-00574048
2024-06-12
Yobe
49.6
C
REC-00429437
2022-05-29
Ogun
80.9
A
REC-00670130
2022-12-26
Abia
79.8
A
REC-00977385
2024-09-18
Plateau
48
A
REC-00915015
2023-02-02
Plateau
86.1
A
REC-00320942
2024-08-22
Anambra
68.3
A
REC-00716634
2024-03-03
Kogi
79.4
A
REC-00060761
2023-10-03
Gombe
80.3
B
REC-00638943
2024-05-13
Katsina
60.5
A
REC-00756752
2024-01-26
Abia
100
A
REC-00981506
2023-04-19
Ogun
89.6
A
REC-00332340
2023-10-05
Bayelsa
59
A
REC-00794650
2023-04-06
Niger
77.5
C
REC-00888690
2022-10-31
Delta
52.5
A
REC-00038146
2022-07-03
Abia
71.2
A
REC-00352924
2024-07-06
Kaduna
74.6
A
REC-00338525
2024-09-23
Delta
67.4
B
REC-00308313
2023-07-30
Bayelsa
56.9
A
REC-00802513
2023-10-09
Rivers
51.8
B
REC-00380766
2023-07-10
Plateau
54.7
C
REC-00145492
2023-07-06
Enugu
83.3
B
REC-00303015
2023-02-23
Kano
41.4
A
REC-00097891
2024-08-16
Katsina
62.7
B
REC-00929081
2024-11-06
Delta
79
C
REC-00741891
2022-03-25
FCT
64
A
REC-00090604
2024-05-21
Enugu
63
A
REC-00402627
2024-07-08
Gombe
100
A
REC-00499222
2023-01-06
Kaduna
62.2
C
REC-00670202
2022-01-18
Kwara
69.8
A
REC-00406955
2022-12-27
Oyo
65.4
A
REC-00069166
2025-02-25
Ogun
64.3
A
REC-00316622
2024-02-29
Ekiti
80.8
B
REC-00052939
2023-10-26
Ondo
86.5
B
REC-00438220
2022-01-09
Ondo
52.4
B
REC-00201422
2022-02-28
FCT
54.6
C
REC-00445038
2023-05-02
Ondo
61.8
C
REC-00733810
2023-07-12
Jigawa
71.7
A
REC-00372649
2025-01-27
Oyo
66.4
C
REC-00969759
2025-01-20
Bayelsa
63.5
B
REC-00119987
2022-04-05
Benue
86.9
A
REC-00670628
2023-03-11
Anambra
73.3
C
REC-00291788
2023-06-12
Jigawa
89.9
A
REC-00226690
2024-08-19
Enugu
41.9
B
REC-00077231
2023-10-21
Benue
50.9
A
REC-00712070
2022-12-18
Jigawa
85.4
A
REC-00500752
2023-04-01
Edo
61.1
B
REC-00581871
2025-03-23
Sokoto
48.7
A
REC-00026501
2024-06-22
Jigawa
48.8
C
REC-00461352
2024-06-14
Akwa Ibom
56.3
B
REC-00893430
2023-09-06
Cross River
44.6
A
REC-00419155
2023-07-28
Kaduna
89.6
C
REC-00131743
2023-04-01
Ekiti
61.4
A
REC-00379631
2025-03-14
Taraba
64.5
A
REC-00852139
2022-11-01
Ogun
38.7
A
REC-00288095
2022-03-16
Katsina
62.6
C
REC-00697288
2023-08-17
Akwa Ibom
49.7
C
REC-00932979
2023-07-21
Ebonyi
54.9
C
REC-00827813
2023-09-26
Ekiti
86.5
A
REC-00213774
2023-06-09
Anambra
72
A
REC-00931118
2023-09-04
Lagos
74.6
A
REC-00208682
2022-08-28
Kwara
73.8
C
REC-00962485
2023-11-10
Kwara
76.6
C
REC-00123748
2025-02-10
Rivers
71.9
B
REC-00503404
2022-11-06
Bauchi
72
A
REC-00260900
2023-08-24
Borno
43.4
A
REC-00046841
2022-03-25
Imo
58.9
B
REC-00554896
2022-03-09
Abia
67.5
B
REC-00002037
2024-09-04
Delta
67.6
A
REC-00141974
2023-04-14
Cross River
66.7
B
REC-00733353
2022-07-09
Bayelsa
88.5
A
REC-00385973
2024-12-11
Cross River
72.9
A
REC-00405097
2022-04-24
Kogi
78.7
C
REC-00777275
2022-10-28
Oyo
85.6
B
REC-00713942
2022-08-31
Ekiti
100
A
REC-00625658
2022-01-24
Oyo
78.6
C
REC-00259558
2022-01-08
Ekiti
63.9
B
REC-00638937
2024-06-19
Kaduna
62.3
A
REC-00073438
2022-02-10
Abia
80.7
A
REC-00237561
2022-04-23
Edo
66.4
B
REC-00265474
2022-12-06
Benue
89.1
A
REC-00361553
2023-07-08
Benue
70.5
A
REC-00441630
2023-06-20
Ondo
83.5
A
REC-00925474
2023-06-07
Ondo
60.9
A
REC-00190566
2023-07-19
Zamfara
56.3
B
REC-00567724
2024-08-16
Kebbi
84.9
B
REC-00138806
2023-12-12
Yobe
78.3
A
REC-00432586
2023-04-19
Yobe
49.3
A
REC-00695163
2022-02-25
FCT
67.3
C
REC-00181060
2024-11-29
Kogi
67.5
C
End of preview. Expand in Data Studio

Nigeria Education – Teacher Demographics

Dataset Description

Synthetic Teachers & Workforce data for Nigeria education sector.

Category: Teachers & Workforce
Rows: 180,000
Format: CSV, Parquet
License: MIT
Synthetic: Yes (generated using reference data from WAEC, JAMB, UBEC, NBS, UNESCO)

Dataset Structure

Schema

  • id: string
  • date: string
  • state: string
  • value: float
  • category: string

Sample Data

| id           | date       | state   |   value | category   |
|:-------------|:-----------|:--------|--------:|:-----------|
| REC-00971631 | 2022-06-09 | Adamawa |    76.6 | B          |
| REC-00469788 | 2022-12-18 | Osun    |    74.6 | A          |
| REC-00714570 | 2022-09-13 | Zamfara |    49.3 | C          |
| REC-00543891 | 2024-06-24 | Edo     |    80.5 | A          |
| REC-00842840 | 2024-06-11 | Oyo     |    57.4 | A          |

Data Generation Methodology

This dataset was synthetically generated using:

  1. Reference Sources:

    • WAEC (West African Examinations Council) - exam results, pass rates, grade distributions
    • JAMB (Joint Admissions and Matriculation Board) - UTME scores, subject combinations
    • UBEC (Universal Basic Education Commission) - enrollment, infrastructure, teacher data
    • NBS (National Bureau of Statistics) - education surveys, literacy rates
    • UNESCO - Nigeria education statistics, enrollment ratios
    • UNICEF - Out-of-school children, gender parity indices
  2. Domain Constraints:

    • WAEC grading system (A1-F9) with official score ranges
    • JAMB UTME scoring (0-400 points, 4 subjects)
    • Nigerian curriculum structure (Primary, JSS, SSS)
    • Academic calendar (3 terms: Sep-Dec, Jan-Apr, May-Jul)
    • Regional disparities (North-South education gap)
    • Gender parity indices by region and level
  3. Quality Assurance:

    • Distribution testing (WAEC grade distributions match national patterns)
    • Correlation validation (attendance-performance, teacher quality-outcomes)
    • Causal consistency (educational outcome models)
    • Multi-scale coherence (student β†’ school β†’ state aggregations)
    • Ethical considerations (representative, unbiased, privacy-preserving)

See QUALITY_ASSURANCE.md in the repository for full methodology.

Use Cases

  • Machine Learning: Performance prediction, dropout forecasting, admission modeling, resource allocation
  • Policy Analysis: Education program evaluation, gender parity assessment, regional disparity studies
  • Research: Teacher effectiveness, infrastructure impact, exam performance patterns
  • Education Planning: School placement, teacher deployment, budget allocation

Limitations

  • Synthetic data: While grounded in real distributions from WAEC/JAMB/UBEC, individual records are not real observations
  • Simplified dynamics: Some complex interactions (e.g., peer effects, teacher-student matching) are simplified
  • Temporal scope: Covers 2022-2025; may not reflect longer-term trends or future policy changes
  • Spatial resolution: State/LGA level; does not capture micro-level heterogeneity within localities

Citation

If you use this dataset, please cite:

@dataset{nigeria_education_2025,
  title = {Nigeria Education – Teacher Demographics},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_education_teacher_demographics}
}

Related Datasets

This dataset is part of the Nigeria Education Sector collection:

Contact

For questions, feedback, or collaboration:

Changelog

Version 1.0.0 (October 2025)

  • Initial release
  • 180,000 synthetic records
  • Quality-assured using WAEC/JAMB/UBEC/NBS reference data
Downloads last month
15

Collection including electricsheepafrica/nigerian_education_teacher_demographics