Datasets:
Delete loading script
Browse files
mlqa.py
DELETED
|
@@ -1,206 +0,0 @@
|
|
| 1 |
-
"""TODO(mlqa): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
import datasets
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# TODO(mlqa): BibTeX citation
|
| 11 |
-
_CITATION = """\
|
| 12 |
-
@article{lewis2019mlqa,
|
| 13 |
-
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
|
| 14 |
-
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
|
| 15 |
-
journal={arXiv preprint arXiv:1910.07475},
|
| 16 |
-
year={2019}
|
| 17 |
-
}
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
# TODO(mlqa):
|
| 21 |
-
_DESCRIPTION = """\
|
| 22 |
-
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
|
| 23 |
-
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
|
| 24 |
-
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
|
| 25 |
-
4 different languages on average.
|
| 26 |
-
"""
|
| 27 |
-
_URL = "https://dl.fbaipublicfiles.com/MLQA/"
|
| 28 |
-
_DEV_TEST_URL = "MLQA_V1.zip"
|
| 29 |
-
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz"
|
| 30 |
-
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz"
|
| 31 |
-
_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi"]
|
| 32 |
-
_TRANSLATE_LANG = ["ar", "de", "vi", "zh", "es", "hi"]
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class MlqaConfig(datasets.BuilderConfig):
|
| 36 |
-
def __init__(self, data_url, **kwargs):
|
| 37 |
-
"""BuilderConfig for MLQA
|
| 38 |
-
|
| 39 |
-
Args:
|
| 40 |
-
data_url: `string`, url to the dataset
|
| 41 |
-
**kwargs: keyword arguments forwarded to super.
|
| 42 |
-
"""
|
| 43 |
-
super(MlqaConfig, self).__init__(
|
| 44 |
-
version=datasets.Version(
|
| 45 |
-
"1.0.0",
|
| 46 |
-
),
|
| 47 |
-
**kwargs,
|
| 48 |
-
)
|
| 49 |
-
self.data_url = data_url
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class Mlqa(datasets.GeneratorBasedBuilder):
|
| 53 |
-
"""TODO(mlqa): Short description of my dataset."""
|
| 54 |
-
|
| 55 |
-
# TODO(mlqa): Set up version.
|
| 56 |
-
VERSION = datasets.Version("1.0.0")
|
| 57 |
-
BUILDER_CONFIGS = (
|
| 58 |
-
[
|
| 59 |
-
MlqaConfig(
|
| 60 |
-
name="mlqa-translate-train." + lang,
|
| 61 |
-
data_url=_URL + _TRANSLATE_TRAIN_URL,
|
| 62 |
-
description="Machine-translated data for Translate-train (SQuAD Train and Dev sets machine-translated into "
|
| 63 |
-
"Arabic, German, Hindi, Vietnamese, Simplified Chinese and Spanish)",
|
| 64 |
-
)
|
| 65 |
-
for lang in _LANG
|
| 66 |
-
if lang != "en"
|
| 67 |
-
]
|
| 68 |
-
+ [
|
| 69 |
-
MlqaConfig(
|
| 70 |
-
name="mlqa-translate-test." + lang,
|
| 71 |
-
data_url=_URL + _TRANSLATE_TEST_URL,
|
| 72 |
-
description="Machine-translated data for Translate-Test (MLQA-test set machine-translated into English) ",
|
| 73 |
-
)
|
| 74 |
-
for lang in _LANG
|
| 75 |
-
if lang != "en"
|
| 76 |
-
]
|
| 77 |
-
+ [
|
| 78 |
-
MlqaConfig(
|
| 79 |
-
name="mlqa." + lang1 + "." + lang2,
|
| 80 |
-
data_url=_URL + _DEV_TEST_URL,
|
| 81 |
-
description="development and test splits",
|
| 82 |
-
)
|
| 83 |
-
for lang1 in _LANG
|
| 84 |
-
for lang2 in _LANG
|
| 85 |
-
]
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
def _info(self):
|
| 89 |
-
# TODO(mlqa): Specifies the datasets.DatasetInfo object
|
| 90 |
-
return datasets.DatasetInfo(
|
| 91 |
-
# This is the description that will appear on the datasets page.
|
| 92 |
-
description=_DESCRIPTION,
|
| 93 |
-
# datasets.features.FeatureConnectors
|
| 94 |
-
features=datasets.Features(
|
| 95 |
-
{
|
| 96 |
-
"context": datasets.Value("string"),
|
| 97 |
-
"question": datasets.Value("string"),
|
| 98 |
-
"answers": datasets.features.Sequence(
|
| 99 |
-
{"answer_start": datasets.Value("int32"), "text": datasets.Value("string")}
|
| 100 |
-
),
|
| 101 |
-
"id": datasets.Value("string"),
|
| 102 |
-
# These are the features of your dataset like images, labels ...
|
| 103 |
-
}
|
| 104 |
-
),
|
| 105 |
-
# If there's a common (input, target) tuple from the features,
|
| 106 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 107 |
-
# builder.as_dataset.
|
| 108 |
-
supervised_keys=None,
|
| 109 |
-
# Homepage of the dataset for documentation
|
| 110 |
-
homepage="https://github.com/facebookresearch/MLQA",
|
| 111 |
-
citation=_CITATION,
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
def _split_generators(self, dl_manager):
|
| 115 |
-
"""Returns SplitGenerators."""
|
| 116 |
-
# TODO(mlqa): Downloads the data and defines the splits
|
| 117 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 118 |
-
# download and extract URLs
|
| 119 |
-
if self.config.name.startswith("mlqa-translate-train"):
|
| 120 |
-
archive = dl_manager.download(self.config.data_url)
|
| 121 |
-
lang = self.config.name.split(".")[-1]
|
| 122 |
-
return [
|
| 123 |
-
datasets.SplitGenerator(
|
| 124 |
-
name=datasets.Split.TRAIN,
|
| 125 |
-
# These kwargs will be passed to _generate_examples
|
| 126 |
-
gen_kwargs={
|
| 127 |
-
"filepath": f"mlqa-translate-train/{lang}_squad-translate-train-train-v1.1.json",
|
| 128 |
-
"files": dl_manager.iter_archive(archive),
|
| 129 |
-
},
|
| 130 |
-
),
|
| 131 |
-
datasets.SplitGenerator(
|
| 132 |
-
name=datasets.Split.VALIDATION,
|
| 133 |
-
# These kwargs will be passed to _generate_examples
|
| 134 |
-
gen_kwargs={
|
| 135 |
-
"filepath": f"mlqa-translate-train/{lang}_squad-translate-train-dev-v1.1.json",
|
| 136 |
-
"files": dl_manager.iter_archive(archive),
|
| 137 |
-
},
|
| 138 |
-
),
|
| 139 |
-
]
|
| 140 |
-
|
| 141 |
-
else:
|
| 142 |
-
if self.config.name.startswith("mlqa."):
|
| 143 |
-
dl_file = dl_manager.download_and_extract(self.config.data_url)
|
| 144 |
-
name = self.config.name.split(".")
|
| 145 |
-
l1, l2 = name[1:]
|
| 146 |
-
return [
|
| 147 |
-
datasets.SplitGenerator(
|
| 148 |
-
name=datasets.Split.TEST,
|
| 149 |
-
# These kwargs will be passed to _generate_examples
|
| 150 |
-
gen_kwargs={
|
| 151 |
-
"filepath": os.path.join(
|
| 152 |
-
os.path.join(dl_file, "MLQA_V1/test"),
|
| 153 |
-
f"test-context-{l1}-question-{l2}.json",
|
| 154 |
-
)
|
| 155 |
-
},
|
| 156 |
-
),
|
| 157 |
-
datasets.SplitGenerator(
|
| 158 |
-
name=datasets.Split.VALIDATION,
|
| 159 |
-
# These kwargs will be passed to _generate_examples
|
| 160 |
-
gen_kwargs={
|
| 161 |
-
"filepath": os.path.join(
|
| 162 |
-
os.path.join(dl_file, "MLQA_V1/dev"), f"dev-context-{l1}-question-{l2}.json"
|
| 163 |
-
)
|
| 164 |
-
},
|
| 165 |
-
),
|
| 166 |
-
]
|
| 167 |
-
else:
|
| 168 |
-
if self.config.name.startswith("mlqa-translate-test"):
|
| 169 |
-
archive = dl_manager.download(self.config.data_url)
|
| 170 |
-
lang = self.config.name.split(".")[-1]
|
| 171 |
-
return [
|
| 172 |
-
datasets.SplitGenerator(
|
| 173 |
-
name=datasets.Split.TEST,
|
| 174 |
-
# These kwargs will be passed to _generate_examples
|
| 175 |
-
gen_kwargs={
|
| 176 |
-
"filepath": f"mlqa-translate-test/translate-test-context-{lang}-question-{lang}.json",
|
| 177 |
-
"files": dl_manager.iter_archive(archive),
|
| 178 |
-
},
|
| 179 |
-
),
|
| 180 |
-
]
|
| 181 |
-
|
| 182 |
-
def _generate_examples(self, filepath, files=None):
|
| 183 |
-
"""Yields examples."""
|
| 184 |
-
if self.config.name.startswith("mlqa-translate"):
|
| 185 |
-
for path, f in files:
|
| 186 |
-
if path == filepath:
|
| 187 |
-
data = json.loads(f.read().decode("utf-8"))
|
| 188 |
-
break
|
| 189 |
-
else:
|
| 190 |
-
with open(filepath, encoding="utf-8") as f:
|
| 191 |
-
data = json.load(f)
|
| 192 |
-
for examples in data["data"]:
|
| 193 |
-
for example in examples["paragraphs"]:
|
| 194 |
-
context = example["context"]
|
| 195 |
-
for qa in example["qas"]:
|
| 196 |
-
question = qa["question"]
|
| 197 |
-
id_ = qa["id"]
|
| 198 |
-
answers = qa["answers"]
|
| 199 |
-
answers_start = [answer["answer_start"] for answer in answers]
|
| 200 |
-
answers_text = [answer["text"] for answer in answers]
|
| 201 |
-
yield id_, {
|
| 202 |
-
"context": context,
|
| 203 |
-
"question": question,
|
| 204 |
-
"answers": {"answer_start": answers_start, "text": answers_text},
|
| 205 |
-
"id": id_,
|
| 206 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|