Commit
·
83ecd0d
1
Parent(s):
079130b
Delete loading script
Browse files
xnli.py
DELETED
|
@@ -1,211 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""XNLI: The Cross-Lingual NLI Corpus."""
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
import collections
|
| 21 |
-
import csv
|
| 22 |
-
import os
|
| 23 |
-
from contextlib import ExitStack
|
| 24 |
-
|
| 25 |
-
import datasets
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
_CITATION = """\
|
| 29 |
-
@InProceedings{conneau2018xnli,
|
| 30 |
-
author = {Conneau, Alexis
|
| 31 |
-
and Rinott, Ruty
|
| 32 |
-
and Lample, Guillaume
|
| 33 |
-
and Williams, Adina
|
| 34 |
-
and Bowman, Samuel R.
|
| 35 |
-
and Schwenk, Holger
|
| 36 |
-
and Stoyanov, Veselin},
|
| 37 |
-
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
|
| 38 |
-
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
|
| 39 |
-
in Natural Language Processing},
|
| 40 |
-
year = {2018},
|
| 41 |
-
publisher = {Association for Computational Linguistics},
|
| 42 |
-
location = {Brussels, Belgium},
|
| 43 |
-
}"""
|
| 44 |
-
|
| 45 |
-
_DESCRIPTION = """\
|
| 46 |
-
XNLI is a subset of a few thousand examples from MNLI which has been translated
|
| 47 |
-
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
|
| 48 |
-
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
| 49 |
-
B) and is a classification task (given two sentences, predict one of three
|
| 50 |
-
labels).
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
_TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip"
|
| 54 |
-
_TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip"
|
| 55 |
-
|
| 56 |
-
_LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh")
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
class XnliConfig(datasets.BuilderConfig):
|
| 60 |
-
"""BuilderConfig for XNLI."""
|
| 61 |
-
|
| 62 |
-
def __init__(self, language: str, languages=None, **kwargs):
|
| 63 |
-
"""BuilderConfig for XNLI.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
language: One of ar,bg,de,el,en,es,fr,hi,ru,sw,th,tr,ur,vi,zh, or all_languages
|
| 67 |
-
**kwargs: keyword arguments forwarded to super.
|
| 68 |
-
"""
|
| 69 |
-
super(XnliConfig, self).__init__(**kwargs)
|
| 70 |
-
self.language = language
|
| 71 |
-
if language != "all_languages":
|
| 72 |
-
self.languages = [language]
|
| 73 |
-
else:
|
| 74 |
-
self.languages = languages if languages is not None else _LANGUAGES
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
class Xnli(datasets.GeneratorBasedBuilder):
|
| 78 |
-
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
|
| 79 |
-
|
| 80 |
-
VERSION = datasets.Version("1.1.0", "")
|
| 81 |
-
BUILDER_CONFIG_CLASS = XnliConfig
|
| 82 |
-
BUILDER_CONFIGS = [
|
| 83 |
-
XnliConfig(
|
| 84 |
-
name=lang,
|
| 85 |
-
language=lang,
|
| 86 |
-
version=datasets.Version("1.1.0", ""),
|
| 87 |
-
description=f"Plain text import of XNLI for the {lang} language",
|
| 88 |
-
)
|
| 89 |
-
for lang in _LANGUAGES
|
| 90 |
-
] + [
|
| 91 |
-
XnliConfig(
|
| 92 |
-
name="all_languages",
|
| 93 |
-
language="all_languages",
|
| 94 |
-
version=datasets.Version("1.1.0", ""),
|
| 95 |
-
description="Plain text import of XNLI for all languages",
|
| 96 |
-
)
|
| 97 |
-
]
|
| 98 |
-
|
| 99 |
-
def _info(self):
|
| 100 |
-
if self.config.language == "all_languages":
|
| 101 |
-
features = datasets.Features(
|
| 102 |
-
{
|
| 103 |
-
"premise": datasets.Translation(
|
| 104 |
-
languages=_LANGUAGES,
|
| 105 |
-
),
|
| 106 |
-
"hypothesis": datasets.TranslationVariableLanguages(
|
| 107 |
-
languages=_LANGUAGES,
|
| 108 |
-
),
|
| 109 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
| 110 |
-
}
|
| 111 |
-
)
|
| 112 |
-
else:
|
| 113 |
-
features = datasets.Features(
|
| 114 |
-
{
|
| 115 |
-
"premise": datasets.Value("string"),
|
| 116 |
-
"hypothesis": datasets.Value("string"),
|
| 117 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
| 118 |
-
}
|
| 119 |
-
)
|
| 120 |
-
return datasets.DatasetInfo(
|
| 121 |
-
description=_DESCRIPTION,
|
| 122 |
-
features=features,
|
| 123 |
-
# No default supervised_keys (as we have to pass both premise
|
| 124 |
-
# and hypothesis as input).
|
| 125 |
-
supervised_keys=None,
|
| 126 |
-
homepage="https://www.nyu.edu/projects/bowman/xnli/",
|
| 127 |
-
citation=_CITATION,
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
def _split_generators(self, dl_manager):
|
| 131 |
-
dl_dirs = dl_manager.download_and_extract(
|
| 132 |
-
{
|
| 133 |
-
"train_data": _TRAIN_DATA_URL,
|
| 134 |
-
"testval_data": _TESTVAL_DATA_URL,
|
| 135 |
-
}
|
| 136 |
-
)
|
| 137 |
-
train_dir = os.path.join(dl_dirs["train_data"], "XNLI-MT-1.0", "multinli")
|
| 138 |
-
testval_dir = os.path.join(dl_dirs["testval_data"], "XNLI-1.0")
|
| 139 |
-
return [
|
| 140 |
-
datasets.SplitGenerator(
|
| 141 |
-
name=datasets.Split.TRAIN,
|
| 142 |
-
gen_kwargs={
|
| 143 |
-
"filepaths": [
|
| 144 |
-
os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
|
| 145 |
-
],
|
| 146 |
-
"data_format": "XNLI-MT",
|
| 147 |
-
},
|
| 148 |
-
),
|
| 149 |
-
datasets.SplitGenerator(
|
| 150 |
-
name=datasets.Split.TEST,
|
| 151 |
-
gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
|
| 152 |
-
),
|
| 153 |
-
datasets.SplitGenerator(
|
| 154 |
-
name=datasets.Split.VALIDATION,
|
| 155 |
-
gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
|
| 156 |
-
),
|
| 157 |
-
]
|
| 158 |
-
|
| 159 |
-
def _generate_examples(self, data_format, filepaths):
|
| 160 |
-
"""This function returns the examples in the raw (text) form."""
|
| 161 |
-
|
| 162 |
-
if self.config.language == "all_languages":
|
| 163 |
-
if data_format == "XNLI-MT":
|
| 164 |
-
with ExitStack() as stack:
|
| 165 |
-
files = [stack.enter_context(open(filepath, encoding="utf-8")) for filepath in filepaths]
|
| 166 |
-
readers = [csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
|
| 167 |
-
for row_idx, rows in enumerate(zip(*readers)):
|
| 168 |
-
yield row_idx, {
|
| 169 |
-
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
|
| 170 |
-
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
|
| 171 |
-
"label": rows[0]["label"].replace("contradictory", "contradiction"),
|
| 172 |
-
}
|
| 173 |
-
else:
|
| 174 |
-
rows_per_pair_id = collections.defaultdict(list)
|
| 175 |
-
for filepath in filepaths:
|
| 176 |
-
with open(filepath, encoding="utf-8") as f:
|
| 177 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 178 |
-
for row in reader:
|
| 179 |
-
rows_per_pair_id[row["pairID"]].append(row)
|
| 180 |
-
|
| 181 |
-
for rows in rows_per_pair_id.values():
|
| 182 |
-
premise = {row["language"]: row["sentence1"] for row in rows}
|
| 183 |
-
hypothesis = {row["language"]: row["sentence2"] for row in rows}
|
| 184 |
-
yield rows[0]["pairID"], {
|
| 185 |
-
"premise": premise,
|
| 186 |
-
"hypothesis": hypothesis,
|
| 187 |
-
"label": rows[0]["gold_label"],
|
| 188 |
-
}
|
| 189 |
-
else:
|
| 190 |
-
if data_format == "XNLI-MT":
|
| 191 |
-
for file_idx, filepath in enumerate(filepaths):
|
| 192 |
-
file = open(filepath, encoding="utf-8")
|
| 193 |
-
reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 194 |
-
for row_idx, row in enumerate(reader):
|
| 195 |
-
key = str(file_idx) + "_" + str(row_idx)
|
| 196 |
-
yield key, {
|
| 197 |
-
"premise": row["premise"],
|
| 198 |
-
"hypothesis": row["hypo"],
|
| 199 |
-
"label": row["label"].replace("contradictory", "contradiction"),
|
| 200 |
-
}
|
| 201 |
-
else:
|
| 202 |
-
for filepath in filepaths:
|
| 203 |
-
with open(filepath, encoding="utf-8") as f:
|
| 204 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 205 |
-
for row in reader:
|
| 206 |
-
if row["language"] == self.config.language:
|
| 207 |
-
yield row["pairID"], {
|
| 208 |
-
"premise": row["sentence1"],
|
| 209 |
-
"hypothesis": row["sentence2"],
|
| 210 |
-
"label": row["gold_label"],
|
| 211 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|