Commit
·
bcc6b12
1
Parent(s):
bc7e4fa
Add bg data files
Browse files- README.md +13 -5
- bg/test-00000-of-00001.parquet +3 -0
- bg/train-00000-of-00001.parquet +3 -0
- bg/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +10 -27
README.md
CHANGED
|
@@ -118,16 +118,16 @@ dataset_info:
|
|
| 118 |
'2': contradiction
|
| 119 |
splits:
|
| 120 |
- name: train
|
| 121 |
-
num_bytes:
|
| 122 |
num_examples: 392702
|
| 123 |
- name: test
|
| 124 |
-
num_bytes:
|
| 125 |
num_examples: 5010
|
| 126 |
- name: validation
|
| 127 |
-
num_bytes:
|
| 128 |
num_examples: 2490
|
| 129 |
-
download_size:
|
| 130 |
-
dataset_size:
|
| 131 |
- config_name: de
|
| 132 |
features:
|
| 133 |
- name: premise
|
|
@@ -462,6 +462,14 @@ configs:
|
|
| 462 |
path: ar/test-*
|
| 463 |
- split: validation
|
| 464 |
path: ar/validation-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
---
|
| 466 |
|
| 467 |
# Dataset Card for "xnli"
|
|
|
|
| 118 |
'2': contradiction
|
| 119 |
splits:
|
| 120 |
- name: train
|
| 121 |
+
num_bytes: 125973225
|
| 122 |
num_examples: 392702
|
| 123 |
- name: test
|
| 124 |
+
num_bytes: 1573034
|
| 125 |
num_examples: 5010
|
| 126 |
- name: validation
|
| 127 |
+
num_bytes: 774061
|
| 128 |
num_examples: 2490
|
| 129 |
+
download_size: 66117878
|
| 130 |
+
dataset_size: 128320320
|
| 131 |
- config_name: de
|
| 132 |
features:
|
| 133 |
- name: premise
|
|
|
|
| 462 |
path: ar/test-*
|
| 463 |
- split: validation
|
| 464 |
path: ar/validation-*
|
| 465 |
+
- config_name: bg
|
| 466 |
+
data_files:
|
| 467 |
+
- split: train
|
| 468 |
+
path: bg/train-*
|
| 469 |
+
- split: test
|
| 470 |
+
path: bg/test-*
|
| 471 |
+
- split: validation
|
| 472 |
+
path: bg/validation-*
|
| 473 |
---
|
| 474 |
|
| 475 |
# Dataset Card for "xnli"
|
bg/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:333a5e84e09415f6a80dd285c4aa64d164bf721237b3e3d34892ce72066c92c1
|
| 3 |
+
size 447341
|
bg/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df65135e5813d4a42b3fd8e018ebfaecd981f7c313bbcfd7288e2019f0f4296c
|
| 3 |
+
size 65447048
|
bg/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfd1a75d8b1c82b97d857aa91cd9bf08e75d1ea58ab43109c2644e82079ac981
|
| 3 |
+
size 223489
|
dataset_infos.json
CHANGED
|
@@ -64,29 +64,23 @@
|
|
| 64 |
"features": {
|
| 65 |
"premise": {
|
| 66 |
"dtype": "string",
|
| 67 |
-
"id": null,
|
| 68 |
"_type": "Value"
|
| 69 |
},
|
| 70 |
"hypothesis": {
|
| 71 |
"dtype": "string",
|
| 72 |
-
"id": null,
|
| 73 |
"_type": "Value"
|
| 74 |
},
|
| 75 |
"label": {
|
| 76 |
-
"num_classes": 3,
|
| 77 |
"names": [
|
| 78 |
"entailment",
|
| 79 |
"neutral",
|
| 80 |
"contradiction"
|
| 81 |
],
|
| 82 |
-
"names_file": null,
|
| 83 |
-
"id": null,
|
| 84 |
"_type": "ClassLabel"
|
| 85 |
}
|
| 86 |
},
|
| 87 |
-
"post_processed": null,
|
| 88 |
-
"supervised_keys": null,
|
| 89 |
"builder_name": "xnli",
|
|
|
|
| 90 |
"config_name": "bg",
|
| 91 |
"version": {
|
| 92 |
"version_str": "1.1.0",
|
|
@@ -98,37 +92,26 @@
|
|
| 98 |
"splits": {
|
| 99 |
"train": {
|
| 100 |
"name": "train",
|
| 101 |
-
"num_bytes":
|
| 102 |
"num_examples": 392702,
|
| 103 |
-
"dataset_name":
|
| 104 |
},
|
| 105 |
"test": {
|
| 106 |
"name": "test",
|
| 107 |
-
"num_bytes":
|
| 108 |
"num_examples": 5010,
|
| 109 |
-
"dataset_name":
|
| 110 |
},
|
| 111 |
"validation": {
|
| 112 |
"name": "validation",
|
| 113 |
-
"num_bytes":
|
| 114 |
"num_examples": 2490,
|
| 115 |
-
"dataset_name":
|
| 116 |
-
}
|
| 117 |
-
},
|
| 118 |
-
"download_checksums": {
|
| 119 |
-
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
| 120 |
-
"num_bytes": 466098360,
|
| 121 |
-
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
| 122 |
-
},
|
| 123 |
-
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
| 124 |
-
"num_bytes": 17865352,
|
| 125 |
-
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
| 126 |
}
|
| 127 |
},
|
| 128 |
-
"download_size":
|
| 129 |
-
"
|
| 130 |
-
"
|
| 131 |
-
"size_in_bytes": 612284368
|
| 132 |
},
|
| 133 |
"de": {
|
| 134 |
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
|
|
|
| 64 |
"features": {
|
| 65 |
"premise": {
|
| 66 |
"dtype": "string",
|
|
|
|
| 67 |
"_type": "Value"
|
| 68 |
},
|
| 69 |
"hypothesis": {
|
| 70 |
"dtype": "string",
|
|
|
|
| 71 |
"_type": "Value"
|
| 72 |
},
|
| 73 |
"label": {
|
|
|
|
| 74 |
"names": [
|
| 75 |
"entailment",
|
| 76 |
"neutral",
|
| 77 |
"contradiction"
|
| 78 |
],
|
|
|
|
|
|
|
| 79 |
"_type": "ClassLabel"
|
| 80 |
}
|
| 81 |
},
|
|
|
|
|
|
|
| 82 |
"builder_name": "xnli",
|
| 83 |
+
"dataset_name": "xnli",
|
| 84 |
"config_name": "bg",
|
| 85 |
"version": {
|
| 86 |
"version_str": "1.1.0",
|
|
|
|
| 92 |
"splits": {
|
| 93 |
"train": {
|
| 94 |
"name": "train",
|
| 95 |
+
"num_bytes": 125973225,
|
| 96 |
"num_examples": 392702,
|
| 97 |
+
"dataset_name": null
|
| 98 |
},
|
| 99 |
"test": {
|
| 100 |
"name": "test",
|
| 101 |
+
"num_bytes": 1573034,
|
| 102 |
"num_examples": 5010,
|
| 103 |
+
"dataset_name": null
|
| 104 |
},
|
| 105 |
"validation": {
|
| 106 |
"name": "validation",
|
| 107 |
+
"num_bytes": 774061,
|
| 108 |
"num_examples": 2490,
|
| 109 |
+
"dataset_name": null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
}
|
| 111 |
},
|
| 112 |
+
"download_size": 66117878,
|
| 113 |
+
"dataset_size": 128320320,
|
| 114 |
+
"size_in_bytes": 194438198
|
|
|
|
| 115 |
},
|
| 116 |
"de": {
|
| 117 |
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|