Create unet_model.py
Browse files- unet_model.py +73 -0
unet_model.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class UNet(nn.Module):
|
| 5 |
+
def __init__(self):
|
| 6 |
+
super(UNet, self).__init__()
|
| 7 |
+
|
| 8 |
+
def conv_block(in_channels, out_channels):
|
| 9 |
+
return nn.Sequential(
|
| 10 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
| 11 |
+
nn.ReLU(inplace=True),
|
| 12 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
| 13 |
+
nn.ReLU(inplace=True),
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Encoder
|
| 17 |
+
self.enc1 = conv_block(3, 64)
|
| 18 |
+
self.enc2 = conv_block(64, 128)
|
| 19 |
+
self.enc3 = conv_block(128, 256)
|
| 20 |
+
self.enc4 = conv_block(256, 512)
|
| 21 |
+
|
| 22 |
+
self.pool = nn.MaxPool2d(2)
|
| 23 |
+
|
| 24 |
+
# Bottleneck
|
| 25 |
+
self.bottleneck = conv_block(512, 1024)
|
| 26 |
+
|
| 27 |
+
# Decoder
|
| 28 |
+
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
|
| 29 |
+
self.dec4 = conv_block(1024, 512)
|
| 30 |
+
|
| 31 |
+
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
|
| 32 |
+
self.dec3 = conv_block(512, 256)
|
| 33 |
+
|
| 34 |
+
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
|
| 35 |
+
self.dec2 = conv_block(256, 128)
|
| 36 |
+
|
| 37 |
+
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
|
| 38 |
+
self.dec1 = conv_block(128, 64)
|
| 39 |
+
|
| 40 |
+
self.conv_last = nn.Conv2d(64, 1, kernel_size=1)
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
c1 = self.enc1(x)
|
| 44 |
+
p1 = self.pool(c1)
|
| 45 |
+
|
| 46 |
+
c2 = self.enc2(p1)
|
| 47 |
+
p2 = self.pool(c2)
|
| 48 |
+
|
| 49 |
+
c3 = self.enc3(p2)
|
| 50 |
+
p3 = self.pool(c3)
|
| 51 |
+
|
| 52 |
+
c4 = self.enc4(p3)
|
| 53 |
+
p4 = self.pool(c4)
|
| 54 |
+
|
| 55 |
+
bottleneck = self.bottleneck(p4)
|
| 56 |
+
|
| 57 |
+
u4 = self.upconv4(bottleneck)
|
| 58 |
+
u4 = torch.cat([u4, c4], dim=1)
|
| 59 |
+
d4 = self.dec4(u4)
|
| 60 |
+
|
| 61 |
+
u3 = self.upconv3(d4)
|
| 62 |
+
u3 = torch.cat([u3, c3], dim=1)
|
| 63 |
+
d3 = self.dec3(u3)
|
| 64 |
+
|
| 65 |
+
u2 = self.upconv2(d3)
|
| 66 |
+
u2 = torch.cat([u2, c2], dim=1)
|
| 67 |
+
d2 = self.dec2(u2)
|
| 68 |
+
|
| 69 |
+
u1 = self.upconv1(d2)
|
| 70 |
+
u1 = torch.cat([u1, c1], dim=1)
|
| 71 |
+
d1 = self.dec1(u1)
|
| 72 |
+
|
| 73 |
+
return torch.sigmoid(self.conv_last(d1))
|