Datasets:
Commit
·
116f04f
1
Parent(s):
5ee2de3
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -112
dataset_infos.json
DELETED
|
@@ -1,112 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"abstractive": {
|
| 3 |
-
"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
|
| 4 |
-
"citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
|
| 5 |
-
"homepage": "https://github.com/google-research-datasets/aquamuse",
|
| 6 |
-
"license": "",
|
| 7 |
-
"features": {
|
| 8 |
-
"query": {
|
| 9 |
-
"dtype": "string",
|
| 10 |
-
"_type": "Value"
|
| 11 |
-
},
|
| 12 |
-
"input_urls": {
|
| 13 |
-
"feature": {
|
| 14 |
-
"dtype": "string",
|
| 15 |
-
"_type": "Value"
|
| 16 |
-
},
|
| 17 |
-
"_type": "Sequence"
|
| 18 |
-
},
|
| 19 |
-
"target": {
|
| 20 |
-
"dtype": "string",
|
| 21 |
-
"_type": "Value"
|
| 22 |
-
}
|
| 23 |
-
},
|
| 24 |
-
"builder_name": "parquet",
|
| 25 |
-
"dataset_name": "aquamuse",
|
| 26 |
-
"config_name": "abstractive",
|
| 27 |
-
"version": {
|
| 28 |
-
"version_str": "2.3.0",
|
| 29 |
-
"major": 2,
|
| 30 |
-
"minor": 3,
|
| 31 |
-
"patch": 0
|
| 32 |
-
},
|
| 33 |
-
"splits": {
|
| 34 |
-
"train": {
|
| 35 |
-
"name": "train",
|
| 36 |
-
"num_bytes": 6434893,
|
| 37 |
-
"num_examples": 6253,
|
| 38 |
-
"dataset_name": null
|
| 39 |
-
},
|
| 40 |
-
"test": {
|
| 41 |
-
"name": "test",
|
| 42 |
-
"num_bytes": 843165,
|
| 43 |
-
"num_examples": 811,
|
| 44 |
-
"dataset_name": null
|
| 45 |
-
},
|
| 46 |
-
"validation": {
|
| 47 |
-
"name": "validation",
|
| 48 |
-
"num_bytes": 689093,
|
| 49 |
-
"num_examples": 661,
|
| 50 |
-
"dataset_name": null
|
| 51 |
-
}
|
| 52 |
-
},
|
| 53 |
-
"download_size": 5167854,
|
| 54 |
-
"dataset_size": 7967151,
|
| 55 |
-
"size_in_bytes": 13135005
|
| 56 |
-
},
|
| 57 |
-
"extractive": {
|
| 58 |
-
"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)",
|
| 59 |
-
"citation": "@misc{kulkarni2020aquamuse,\n title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},\n author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},\n year={2020},\n eprint={2010.12694},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
|
| 60 |
-
"homepage": "https://github.com/google-research-datasets/aquamuse",
|
| 61 |
-
"license": "",
|
| 62 |
-
"features": {
|
| 63 |
-
"query": {
|
| 64 |
-
"dtype": "string",
|
| 65 |
-
"_type": "Value"
|
| 66 |
-
},
|
| 67 |
-
"input_urls": {
|
| 68 |
-
"feature": {
|
| 69 |
-
"dtype": "string",
|
| 70 |
-
"_type": "Value"
|
| 71 |
-
},
|
| 72 |
-
"_type": "Sequence"
|
| 73 |
-
},
|
| 74 |
-
"target": {
|
| 75 |
-
"dtype": "string",
|
| 76 |
-
"_type": "Value"
|
| 77 |
-
}
|
| 78 |
-
},
|
| 79 |
-
"builder_name": "parquet",
|
| 80 |
-
"dataset_name": "aquamuse",
|
| 81 |
-
"config_name": "extractive",
|
| 82 |
-
"version": {
|
| 83 |
-
"version_str": "2.3.0",
|
| 84 |
-
"major": 2,
|
| 85 |
-
"minor": 3,
|
| 86 |
-
"patch": 0
|
| 87 |
-
},
|
| 88 |
-
"splits": {
|
| 89 |
-
"train": {
|
| 90 |
-
"name": "train",
|
| 91 |
-
"num_bytes": 6434893,
|
| 92 |
-
"num_examples": 6253,
|
| 93 |
-
"dataset_name": null
|
| 94 |
-
},
|
| 95 |
-
"test": {
|
| 96 |
-
"name": "test",
|
| 97 |
-
"num_bytes": 843165,
|
| 98 |
-
"num_examples": 811,
|
| 99 |
-
"dataset_name": null
|
| 100 |
-
},
|
| 101 |
-
"validation": {
|
| 102 |
-
"name": "validation",
|
| 103 |
-
"num_bytes": 689093,
|
| 104 |
-
"num_examples": 661,
|
| 105 |
-
"dataset_name": null
|
| 106 |
-
}
|
| 107 |
-
},
|
| 108 |
-
"download_size": 5162151,
|
| 109 |
-
"dataset_size": 7967151,
|
| 110 |
-
"size_in_bytes": 13129302
|
| 111 |
-
}
|
| 112 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|