LeRobotDataset v3.0

LeRobotDataset v3.0 is a standardized format for robot learning data. It provides unified access to multi-modal time-series data, sensorimotor signals and multi‑camera video, as well as rich metadata for indexing, search, and visualization on the Hugging Face Hub.

This docs will guide you to:

What’s new in v3

Installation

LeRobotDataset v3.0 will be included in lerobot >= 0.4.0.

Until that stable release, you can use the main branch by following the build from source instructions.

Record a dataset

Run the command below to record a dataset with the SO-101 and push to the Hub:

lerobot-record \
  --robot.type=so101_follower \
  --robot.port=/dev/tty.usbmodem585A0076841 \
  --robot.id=my_awesome_follower_arm \
  --robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
  --teleop.type=so101_leader \
  --teleop.port=/dev/tty.usbmodem58760431551 \
  --teleop.id=my_awesome_leader_arm \
  --display_data=true \
  --dataset.repo_id=${HF_USER}/record-test \
  --dataset.num_episodes=5 \
  --dataset.single_task="Grab the black cube"

See the recording guide for more details.

Format design

A core v3 principle is decoupling storage from the user API: data is stored efficiently (few large files), while the public API exposes intuitive episode-level access.

v3 has three pillars:

  1. Tabular data: Low‑dimensional, high‑frequency signals (states, actions, timestamps) stored in Apache Parquet. Access is memory‑mapped or streamed via the datasets stack.
  2. Visual data: Camera frames concatenated and encoded into MP4. Frames from the same episode are grouped; videos are sharded per camera for practical sizes.
  3. Metadata: JSON/Parquet records describing schema (feature names, dtypes, shapes), frame rates, normalization stats, and episode segmentation (start/end offsets into shared Parquet/MP4 files).

To scale to millions of episodes, tabular rows and video frames from multiple episodes are concatenated into larger files. Episode‑specific views are reconstructed via metadata, not file boundaries.

LeRobotDataset v3 diagram
From episode‑based to file‑based datasets

Directory layout (simplified)

Load a dataset for training

LeRobotDataset returns Python dictionaries of PyTorch tensors and integrates with torch.utils.data.DataLoader. Here is a code example showing its use:

import torch
from lerobot.datasets.lerobot_dataset import LeRobotDataset

repo_id = "yaak-ai/L2D-v3"

# 1) Load from the Hub (cached locally)
dataset = LeRobotDataset(repo_id)

# 2) Random access by index
sample = dataset[100]
print(sample)
# {
#   'observation.state': tensor([...]),
#   'action': tensor([...]),
#   'observation.images.front_left': tensor([C, H, W]),
#   'timestamp': tensor(1.234),
#   ...
# }

# 3) Temporal windows via delta_timestamps (seconds relative to t)
delta_timestamps = {
    "observation.images.front_left": [-0.2, -0.1, 0.0]  # 0.2s and 0.1s before current frame
}

dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)

# Accessing an index now returns a stack for the specified key(s)
sample = dataset[100]
print(sample["observation.images.front_left"].shape)  # [T, C, H, W], where T=3

# 4) Wrap with a DataLoader for training
batch_size = 16
data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size)

device = "cuda" if torch.cuda.is_available() else "cpu"
for batch in data_loader:
    observations = batch["observation.state"].to(device)
    actions = batch["action"].to(device)
    images = batch["observation.images.front_left"].to(device)
    # model.forward(batch)

Stream a dataset (no downloads)

Use StreamingLeRobotDataset to iterate directly from the Hub without local copies. This allows to stream large datasets without the need to downloading them onto disk or loading them onto memory, and is a key feature of the new dataset format.

from lerobot.datasets.streaming_dataset import StreamingLeRobotDataset

repo_id = "yaak-ai/L2D-v3"
dataset = StreamingLeRobotDataset(repo_id)  # streams directly from the Hub
StreamingLeRobotDataset
Stream directly from the Hub for on‑the‑fly training.

Image transforms

Image transforms are data augmentations applied to camera frames during training to improve model robustness and generalization. LeRobot supports various transforms including brightness, contrast, saturation, hue, and sharpness adjustments.

Using transforms during dataset creation/recording

Currently, transforms are applied during training time only, not during recording. When you create or record a dataset, the raw images are stored without transforms. This allows you to experiment with different augmentations later without re-recording data.

Adding transforms to existing datasets (API)

Use the image_transforms parameter when loading a dataset for training:

from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.datasets.transforms import ImageTransforms, ImageTransformsConfig, ImageTransformConfig

# Option 1: Use default transform configuration (disabled by default)
transforms_config = ImageTransformsConfig(
    enable=True,  # Enable transforms
    max_num_transforms=3,  # Apply up to 3 transforms per frame
    random_order=False,  # Apply in standard order
)
transforms = ImageTransforms(transforms_config)

dataset = LeRobotDataset(
    repo_id="your-username/your-dataset",
    image_transforms=transforms
)

# Option 2: Create custom transform configuration
custom_transforms_config = ImageTransformsConfig(
    enable=True,
    max_num_transforms=2,
    random_order=True,
    tfs={
        "brightness": ImageTransformConfig(
            weight=1.0,
            type="ColorJitter",
            kwargs={"brightness": (0.7, 1.3)}  # Adjust brightness range
        ),
        "contrast": ImageTransformConfig(
            weight=2.0,  # Higher weight = more likely to be selected
            type="ColorJitter",
            kwargs={"contrast": (0.8, 1.2)}
        ),
        "sharpness": ImageTransformConfig(
            weight=0.5,  # Lower weight = less likely to be selected
            type="SharpnessJitter",
            kwargs={"sharpness": (0.3, 2.0)}
        ),
    }
)

dataset = LeRobotDataset(
    repo_id="your-username/your-dataset",
    image_transforms=ImageTransforms(custom_transforms_config)
)

# Option 3: Use pure torchvision transforms
from torchvision.transforms import v2

torchvision_transforms = v2.Compose([
    v2.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    v2.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
])

dataset = LeRobotDataset(
    repo_id="your-username/your-dataset",
    image_transforms=torchvision_transforms
)

Available transform types

LeRobot provides several transform types:

You can also use any torchvision.transforms.v2 transform by passing it directly to the image_transforms parameter.

Configuration options

Visualizing transforms

Use the visualization script to preview how transforms affect your data:

lerobot-imgtransform-viz \
  --repo-id=your-username/your-dataset \
  --output-dir=./transform_examples \
  --n-examples=5

This saves example images showing the effect of each transform, helping you tune parameters.

Best practices

Migrate v2.1 → v3.0

A converter aggregates per‑episode files into larger shards and writes episode offsets/metadata. Convert your dataset using the instructions below.

# Pre-release build with v3 support:
pip install "https://github.com/huggingface/lerobot/archive/33cad37054c2b594ceba57463e8f11ee374fa93c.zip"

# Convert an existing v2.1 dataset hosted on the Hub:
python -m lerobot.datasets.v30.convert_dataset_v21_to_v30 --repo-id=<HF_USER/DATASET_ID>

What it does

Common Issues

Always call finalize() before pushing

When creating or recording datasets, you must call dataset.finalize() to properly close parquet writers. See the PR #1903 for more details.

from lerobot.datasets.lerobot_dataset import LeRobotDataset

# Create dataset and record episodes
dataset = LeRobotDataset.create(...)

for episode in range(num_episodes):
    # Record frames
    for frame in episode_data:
        dataset.add_frame(frame)
    dataset.save_episode()

# Call finalize() when done recording and before push_to_hub()
dataset.finalize()  # Closes parquet writers, writes metadata footers
dataset.push_to_hub()

Why is this necessary?

Dataset v3.0 uses incremental parquet writing with buffered metadata for efficiency. The finalize() method:

Without calling finalize(), your parquet files will be incomplete and the dataset won’t load properly.

Update on GitHub