class lighteval.logging.evaluation_tracker.EvaluationTracker
< source > ( output_dir: str results_path_template: str | None = None save_details: bool = True push_to_hub: bool = False push_to_tensorboard: bool = False hub_results_org: str | None = '' tensorboard_metric_prefix: str = 'eval' public: bool = False nanotron_run_info: GeneralArgs = None use_wandb: bool = False )
Parameters
- output_dir (str) — Local directory to save evaluation results and logs
- results_path_template (str, optional) — Template for results directory structure.
Example: “{outputdir}/results/{org}{model}”
- save_details (bool, defaults to True) — Whether to save detailed evaluation records
- push_to_hub (bool, defaults to False) — Whether to push results to HF Hub
- push_to_tensorboard (bool, defaults to False) — Whether to push metrics to TensorBoard
- hub_results_org (str, optional) — HF Hub organization to push results to
- tensorboard_metric_prefix (str, defaults to “eval”) — Prefix for TensorBoard metrics
- public (bool, defaults to False) — Whether to make Hub datasets public
- nanotron_run_info (GeneralArgs, optional) — Nanotron model run information
- use_wandb (bool, defaults to False) — Whether to log to Weights & Biases or Trackio if available
Tracks and manages evaluation results, metrics, and logging for model evaluations.
The EvaluationTracker coordinates multiple specialized loggers to track different aspects of model evaluation:
- Details Logger (DetailsLogger): Records per-sample evaluation details and predictions
- Metrics Logger (MetricsLogger): Tracks aggregate evaluation metrics and scores
- Versions Logger (VersionsLogger): Records task and dataset versions
- General Config Logger (GeneralConfigLogger): Stores overall evaluation configuration
- Task Config Logger (TaskConfigLogger): Maintains per-task configuration details
The tracker can save results locally and optionally push them to:
- Hugging Face Hub as datasets
- TensorBoard for visualization
- Trackio or Weights & Biases for experiment tracking
Example:
tracker = EvaluationTracker(
output_dir="./eval_results",
push_to_hub=True,
hub_results_org="my-org",
save_details=True
)
tracker.metrics_logger.add_metric("accuracy", 0.85)
tracker.details_logger.add_detail(task_name="qa", prediction="Paris")
tracker.save() generate_final_dict
< source > ( ) → dict
Dictionary containing all experiment information including config, results, versions, and summaries
Aggregates and returns all the logger’s experiment information in a dictionary.
This function should be used to gather and display said information at the end of an evaluation run.
push_to_hub
< source > ( date_id: str details: dict results_dict: dict )
Pushes the experiment details (all the model predictions for every step) to the hub.
recreate_metadata_card
< source > ( repo_id: str )
Parameters
- repo_id (str) — Details dataset repository path on the hub (
org/dataset)
Fully updates the details repository metadata card for the currently evaluated model
Saves the experiment information and results to files, and to the hub if requested.