Lighteval allows you to use VLLM as a backend, providing significant speedups for model evaluation.
To use VLLM, simply change the model_args to reflect the arguments you want to pass to VLLM.
Documentation for VLLM engine arguments can be found here
lighteval vllm \
"model_name=HuggingFaceH4/zephyr-7b-beta" \
"extended|ifeval|0"VLLM can distribute the model across multiple GPUs using data parallelism, pipeline parallelism, or tensor parallelism.
You can choose the parallelism method by setting the appropriate parameters in the model_args.
For example, if you have 4 GPUs, you can split the model across them using tensor parallelism:
export VLLM_WORKER_MULTIPROC_METHOD=spawn && lighteval vllm \
"model_name=HuggingFaceH4/zephyr-7b-beta,tensor_parallel_size=4" \
"extended|ifeval|0"If your model fits on a single GPU, you can use data parallelism to speed up the evaluation:
export VLLM_WORKER_MULTIPROC_METHOD=spawn && lighteval vllm \
"model_name=HuggingFaceH4/zephyr-7b-beta,data_parallel_size=4" \
"extended|ifeval|0"For more advanced configurations, you can use a YAML configuration file for the model.
An example configuration file is shown below and can be found at examples/model_configs/vllm_model_config.yaml.
lighteval vllm \
"examples/model_configs/vllm_model_config.yaml" \
"extended|ifeval|0"model_parameters:
model_name: "HuggingFaceTB/SmolLM-1.7B-Instruct"
revision: "main"
dtype: "bfloat16"
tensor_parallel_size: 1
data_parallel_size: 1
pipeline_parallel_size: 1
gpu_memory_utilization: 0.9
max_model_length: 2048
swap_space: 4
seed: 1
trust_remote_code: True
add_special_tokens: True
multichoice_continuations_start_space: True
pairwise_tokenization: True
subfolder: null
generation_parameters:
presence_penalty: 0.0
repetition_penalty: 1.0
frequency_penalty: 0.0
temperature: 1.0
top_k: 50
min_p: 0.0
top_p: 1.0
seed: 42
stop_tokens: null
max_new_tokens: 1024
min_new_tokens: 0In case of out-of-memory (OOM) issues, you might need to reduce the context size of the model as well as reduce the
gpu_memory_utilizationparameter.
gpu_memory_utilization: Controls how much GPU memory VLLM can use (default: 0.9)max_model_length: Maximum sequence length for the modelswap_space: Amount of CPU memory to use for swapping (in GB)tensor_parallel_size: Number of GPUs for tensor parallelismdata_parallel_size: Number of GPUs for data parallelismpipeline_parallel_size: Number of GPUs for pipeline parallelismtemperature: Controls randomness in generation (0.0 = deterministic, 1.0 = random)top_p: Nucleus sampling parametertop_k: Top-k sampling parametermax_new_tokens: Maximum number of tokens to generaterepetition_penalty: Penalty for repeating tokensgpu_memory_utilization or max_model_lengthVLLM_WORKER_MULTIPROC_METHOD=spawn is set for multi-GPU setups