MrtinoRG commited on
Commit
8d587a1
Β·
verified Β·
1 Parent(s): c17d995

Overwrite defaults + add visible note

Browse files
Files changed (1) hide show
  1. README.md +198 -113
README.md CHANGED
@@ -4440,186 +4440,271 @@ dataset_citation: "@article{mirza2025chempile0,\n title = {ChemPile: A 250GB
4440
  and Nawaf Alampara and MartiΓ±o RΓ­os-GarcΓ­a and others},\n year = {2025},\n \
4441
  \ journal = {arXiv preprint arXiv:2505.12534}\n}"
4442
  ---
4443
- # ChemPile-Reasoning
4444
 
4445
  <div align="center">
4446
 
4447
  ![ChemPile Logo](CHEMPILE_LOGO.png)
4448
 
4449
- [![Dataset](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Dataset-yellow)](https://huggingface.co/datasets/jablonkagroup/chempile-reasoning)
4450
- [![License: CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-blue.svg)](https://creativecommons.org/licenses/by-sa/4.0/)
4451
  [![Paper](https://img.shields.io/badge/πŸ“„-Paper-red)](https://arxiv.org/abs/2505.12534)
4452
  [![Website](https://img.shields.io/badge/🌐-Website-green)](https://chempile.lamalab.org/)
4453
 
4454
- *A comprehensive collection of reasoning tasks for chemistry, spectral analysis, and scientific understanding*
4455
 
4456
  </div>
4457
 
4458
  ## πŸ“‹ Dataset Summary
4459
 
4460
- ChemPile-Reasoning is a dataset designed for reasoning tasks in the field of chemistry. It is part of the ChemPile project, which aims to create a comprehensive collection of chemistry-related data for training language models. This dataset includes a variety of reasoning tasks derived from scientific Stack Exchange platforms, as well as reasoning traces from state-of-the-art (SOTA) language models. The dataset is structured to facilitate the evaluation of reasoning capabilities in chemistry-related contexts.
4461
 
4462
- The dataset includes different subsets or Hugging Face configurations that correspond to different sources of scientific material:
4463
-
4464
- - chemistry_stackexchange-completion_0
4465
- - chemistry_stackexchange-completion_1
4466
- - chemistry_stackexchange-instruction_0
4467
- - chemistry_stackexchange-instruction_1
4468
- - chemistry_stackexchange-instruction_2
4469
- - chemistry_stackexchange-raw_data
4470
- - claude-3.5-distilled-spectral-reasoning-default
4471
- - mattermodeling_stackexchange-completion_0
4472
- - mattermodeling_stackexchange-completion_1
4473
- - mattermodeling_stackexchange-instruction_0
4474
- - mattermodeling_stackexchange-instruction_1
4475
- - mattermodeling_stackexchange-instruction_2
4476
- - mattermodeling_stackexchange-raw_data
4477
- - physics_stackexchange-completion_0
4478
- - physics_stackexchange-completion_1
4479
- - physics_stackexchange-instruction_0
4480
- - physics_stackexchange-instruction_1
4481
- - physics_stackexchange-instruction_2
4482
- - physics_stackexchange-raw_data
4483
- - spectra_reasoning_deepseek-default
4484
- - spectra_reasoning_deepseek_mcq-default
4485
-
4486
- All the content is made open-source under the license cc-by-sa-4.0, allowing for free use and redistribution with proper attribution.
4487
 
4488
  ### πŸ“Š Dataset Statistics
4489
 
4490
- | Subset | Examples | Tokens | Description |
4491
- |--------|----------|--------|-------------|
4492
- | StackExchange | 71,658 | 21.3B | Reasoning tasks from scientific Stack Exchange platforms |
4493
- | Spectra Reasoning | 1,070 | 2.16M | Spectral analysis reasoning traces from SOTA models |
4494
- | **Total** | **~72.7K** | **~21.3B** | Scientific reasoning tasks and traces |
4495
 
4496
  ## πŸ—‚οΈ Dataset Configurations
4497
 
4498
- ### πŸ§ͺ Spectra Reasoning
 
 
4499
 
4500
- The Spectra Reasoning subsets of ChemPile-Reasoning contain reasoning tasks derived from spectral data, specifically focusing on the analysis and interpretation of spectral information. The dataset includes three configurations: two distilled for DeepSeek-R1 model reasoning about a series of spectra (proton and carbon NMR and IR) for one molecule, one open-ended and another for multiple-choice questions (MCQ) based on spectral data, and other configuration distilled from Claude-3.5-Sonnet for single-spectra reasoning (only proton NMR). The dataset is designed to evaluate the reasoning capabilities of language models in the context of spectral analysis.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4501
 
4502
- **DeepSeek Configurations Fields**:
4503
- - `smiles`: The SMILES representation of the molecule associated with the spectral data
4504
- - `reasoning`: The reasoning trace or explanation provided by the model for the spectral analysis
4505
- - `response`: The model's response to the spectral reasoning task
4506
- - `response_smiles`: The SMILES representation of the molecule parsed from the model's response
4507
- - `correct`: If the model's response is correct or not, based on the spectral data
4508
- - `question`: The question or task related to the spectral data that the model is addressing
4509
- - `text`: The joined text of the question, reasoning, and response for the model's output
4510
 
4511
- **Claude-3.5-Sonnet Configuration Fields**:
4512
- - `prompt`: The prompt or question related to the spectral data
4513
- - `extracted_reasoning`: The reasoning trace or explanation with the final answer provided by the model for the spectral analysis
4514
- - `text`: The joined text of the prompt and extracted reasoning for the model's output
4515
- - `index`: The index of the example in the dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4516
 
4517
- **Statistics**: 1.07K examples with a total of over 2.16M tokens
4518
 
4519
- ### πŸ“š StackExchange
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4520
 
4521
- The StackExchange subsets of ChemPile-Reasoning contains reasoning tasks derived from scientific Stack Exchange platforms, specifically from the chemistry, matter modeling and physics domains. For each of the datasets, different configs are available: two in completion format and three in instruction format, as well as the raw data. For the different formats, different text templates are used to structure the data. The completion format is designed for tasks where the model needs to generate a response based on a given input, while the instruction format provides a more structured approach with specific instructions for the model to follow. The raw data config contains the original data without any modifications or formatting.
4522
 
4523
- **Completion and Instruction Format Fields**:
4524
- - `text`: The original text from the Stack Exchange post
4525
- - `input`: The input text for the model, which may include the question or context
4526
- - `output`: The expected output or answer to the question
4527
- - `answer_choices`: A list of possible answer choices for the question
4528
- - `correct_output_index`: The index of the correct answer in the answer_choices list
 
 
 
 
 
4529
 
4530
- **Raw Data Configuration Fields**:
4531
- - `title`: The title of the Stack Exchange post
4532
- - `q`: The question text from the Stack Exchange post
4533
- - `a`: The answer text from the Stack Exchange post
4534
- - `split`: The split of the dataset (train, test, or validation)
4535
- - `index`: The index of the post in the dataset
4536
- - `text`: The joined text of the title, question, and answer for the post
4537
 
4538
- **Statistics**: 71,658 examples with a total of over 21.3B tokens
 
 
 
 
 
 
4539
 
4540
- ## οΏ½ License
4541
 
4542
- All content is released under the **CC BY-SA 4.0** license, which allows for:
4543
- - βœ… Free use and distribution
4544
- - βœ… Commercial use
4545
  - βœ… Modification and derivatives
4546
  - ⚠️ Attribution required
4547
- - ⚠️ Share-alike requirements
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4548
 
4549
- ## οΏ½πŸš€ Quick Start
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4550
 
4551
  ```python
4552
  from datasets import load_dataset, get_dataset_config_names
4553
 
4554
  # Print available configs for the dataset
4555
- configs = get_dataset_config_names("jablonkagroup/chempile-reasoning")
4556
  print(f"Available configs: {configs}")
4557
- # Available configs: ['chemistry_stackexchange-completion_0', 'chemistry_stackexchang...
4558
 
4559
- dataset = load_dataset("jablonkagroup/chempile-reasoning", name=configs[0])
4560
- # Loading config: chemistry_stackexchange-completion_0
4561
 
4562
  print(dataset)
4563
  # DatasetDict({
4564
- # train: Dataset({
4565
- # features: ['text', 'input', 'output', 'answer_choices', 'correct_output_index'],
4566
- # num_rows: 3207
4567
- # })
4568
- # test: Dataset({
4569
- # features: ['text', 'input', 'output', 'answer_choices', 'correct_output_index'],
4570
- # num_rows: 687
4571
- # })
4572
- # val: Dataset({
4573
- # features: ['text', 'input', 'output', 'answer_choices', 'correct_output_index'],
4574
- # num_rows: 687
4575
- # })
4576
  # })
4577
 
4578
  split_name = list(dataset.keys())[0]
4579
  sample = dataset[split_name][0]
4580
  print(sample)
4581
  # {
4582
- # 'text': 'The answer to the query "We know that the...
4583
- # 'input': 'The answer to the query "We know that the...
4584
- # 'output': '',
4585
- # 'answer_choices': [],
4586
- # 'correct_output_index': None
 
 
 
 
 
 
4587
  # }
4588
  ```
4589
 
4590
  ## 🎯 Use Cases
4591
 
4592
- - **οΏ½ Scientific Reasoning**: Training models for complex chemical and physical reasoning tasks
4593
- - **πŸ“Š Spectral Analysis**: Building systems for automated spectral interpretation and structure elucidation
4594
- - **πŸ”¬ Educational AI**: Developing tutoring systems for chemistry and materials science education
4595
- - **οΏ½ Question Answering**: Advanced scientific question-answering systems for research support
4596
- - **πŸ€– Research Assistance**: Automated analysis and interpretation of scientific problems
4597
 
4598
  ## ⚠️ Limitations & Considerations
4599
 
4600
- - **Language**: Primarily English content (monolingual dataset)
4601
- - **Scope**: Focused on chemistry, physics, and materials science; specialized domain knowledge required
4602
- - **Quality**: Variable quality across sources; some reasoning traces may contain errors or inconsistencies
4603
- - **Bias**: Reflects biases present in Stack Exchange communities and model-generated content
4604
- - **Complexity**: Contains advanced scientific concepts that may require domain expertise to validate
 
 
4605
 
4606
  ## πŸ› οΈ Data Processing Pipeline
4607
 
4608
- 1. **Collection**: Automated extraction from Stack Exchange platforms and model reasoning traces
4609
- 2. **Filtering**: Domain-specific filtering for chemistry, physics, and materials science relevance
4610
- 3. **Format Conversion**: Multiple formatting approaches (completion, instruction, raw data)
4611
- 4. **Quality Control**: Expert validation and automated filtering
4612
- 5. **Reasoning Extraction**: Parsing and structuring of model reasoning traces
4613
- 6. **Standardization**: Consistent formatting and metadata extraction
4614
  7. **Validation**: Train/validation/test splits and quality checks
4615
 
4616
  ## πŸ—οΈ ChemPile Collection
4617
 
4618
- This dataset is part of the **ChemPile** collection, a comprehensive open dataset containing over 75 billion tokens of curated chemical data for training and evaluating general-purpose models in the chemical sciences.
4619
 
4620
  ### Collection Overview
 
4621
  - **πŸ“Š Scale**: 75+ billion tokens across multiple modalities
4622
- - **🧬 Modalities**: Structured representations (SMILES, SELFIES, IUPAC, InChI), scientific text, executable code, reasoning traces, and molecular images
4623
  - **🎯 Design**: Integrates foundational educational knowledge with specialized scientific literature
4624
  - **πŸ”¬ Curation**: Extensive expert curation and validation
4625
  - **πŸ“ˆ Benchmarking**: Standardized train/validation/test splits for robust evaluation
@@ -4642,7 +4727,7 @@ If you use this dataset in your research, please cite:
4642
 
4643
  - **Paper**: [arXiv:2505.12534](https://arxiv.org/abs/2505.12534)
4644
  - **Website**: [ChemPile Project](https://chempile.lamalab.org/)
4645
- - **Dataset**: [Hugging Face](https://huggingface.co/datasets/jablonkagroup/chempile-reasoning)
4646
  - **Issues**: Please report data issues or questions via the Hugging Face dataset page
4647
 
4648
  ---
 
4440
  and Nawaf Alampara and MartiΓ±o RΓ­os-GarcΓ­a and others},\n year = {2025},\n \
4441
  \ journal = {arXiv preprint arXiv:2505.12534}\n}"
4442
  ---
4443
+ # ChemPile-MLIFT
4444
 
4445
  <div align="center">
4446
 
4447
  ![ChemPile Logo](CHEMPILE_LOGO.png)
4448
 
4449
+ [![Dataset](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Dataset-yellow)](https://huggingface.co/datasets/jablonkagroup/chempile-mlift)
4450
+ [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-blue.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
4451
  [![Paper](https://img.shields.io/badge/πŸ“„-Paper-red)](https://arxiv.org/abs/2505.12534)
4452
  [![Website](https://img.shields.io/badge/🌐-Website-green)](https://chempile.lamalab.org/)
4453
 
4454
+ *A comprehensive multimodal dataset for chemistry property prediction using vision large language models*
4455
 
4456
  </div>
4457
 
4458
  ## πŸ“‹ Dataset Summary
4459
 
4460
+ ChemPile-MLIFT is a dataset designed for multimodal chemistry property prediction tasks, specifically focusing on the prediction of chemical properties using vision large language models (VLLMs). It is part of the ChemPile project, which aims to create a comprehensive collection of chemistry-related data for training LLMs. The dataset includes a wide range of chemical properties and is structured to facilitate the training of models that can understand and predict chemical properties based on textual descriptions, molecular representations and the image of the corresponding molecule. Thus, each example in the dataset contains the image of the molecule involved.
4461
 
4462
+ The origin of the dataset property data is from well-known chemistry datasets such as the QM9 dataset, which contains quantum mechanical properties of small organic molecules, and the RDKit dataset, which includes a wide range of chemical properties derived from molecular structures. Each of the subsets or Hugging Face configurations corresponds to a different source of chemical property data, allowing for diverse training scenarios:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463
 
4464
  ### πŸ“Š Dataset Statistics
4465
 
4466
+ The resulting dataset contains **61.5M examples** with one image per example, making it a substantial resource for training and evaluating VLLMs in the field of chemistry.
 
 
 
 
4467
 
4468
  ## πŸ—‚οΈ Dataset Configurations
4469
 
4470
+ The dataset includes diverse configurations covering various chemical property domains, organized by thematic groups:
4471
+
4472
+ ### πŸ’Š Drug Discovery and ADMET Properties
4473
 
4474
+ - BACE-multimodal
4475
+ - BBBP-multimodal
4476
+ - bioavailability_ma_et_al-multimodal
4477
+ - blood_brain_barrier_martins_et_al-multimodal
4478
+ - caco2_wang-multimodal
4479
+ - clearance_astrazeneca-multimodal
4480
+ - cyp2c9_substrate_carbonmangels-multimodal
4481
+ - cyp2d6_substrate_carbonmangels-multimodal
4482
+ - cyp3a4_substrate_carbonmangels-multimodal
4483
+ - cyp_p450_1a2_inhibition_veith_et_al-multimodal
4484
+ - cyp_p450_2c19_inhibition_veith_et_al-multimodal
4485
+ - cyp_p450_2c9_inhibition_veith_et_al-multimodal
4486
+ - cyp_p450_2d6_inhibition_veith_et_al-multimodal
4487
+ - cyp_p450_3a4_inhibition_veith_et_al-multimodal
4488
+ - drug_induced_liver_injury-multimodal
4489
+ - freesolv-multimodal
4490
+ - half_life_obach-multimodal
4491
+ - human_intestinal_absorption-multimodal
4492
+ - lipophilicity-multimodal
4493
+ - p_glycoprotein_inhibition_broccatelli_et_al-multimodal
4494
+ - pampa_ncats-multimodal
4495
+ - solubility_aqsoldb-multimodal
4496
+ - volume_of_distribution_at_steady_state_lombardo_et_al-multimodal
4497
 
4498
+ ### ⚠️ Toxicology and Safety Assessment
 
 
 
 
 
 
 
4499
 
4500
+ - ames_mutagenicity-multimodal
4501
+ - carcinogens-multimodal
4502
+ - clintox-multimodal
4503
+ - herg_blockers-multimodal
4504
+ - herg_central_at_10uM-multimodal
4505
+ - herg_central_at_1uM-multimodal
4506
+ - herg_central_inhib-multimodal
4507
+ - herg_karim_et_al-multimodal
4508
+ - ld50_catmos-multimodal
4509
+ - ld50_zhu-multimodal
4510
+ - nr_ahr_tox21-multimodal
4511
+ - nr_ar_lbd_tox21-multimodal
4512
+ - nr_ar_tox21-multimodal
4513
+ - nr_aromatase_tox21-multimodal
4514
+ - nr_er_lbd_tox21-multimodal
4515
+ - nr_er_tox21-multimodal
4516
+ - nr_ppar_gamma_tox21-multimodal
4517
+ - SIDER-multimodal
4518
+ - sigma_aldrich_safety_data-multimodal
4519
+ - skin_reaction-multimodal
4520
+ - sr_are_tox21-multimodal
4521
+ - sr_atad5_tox21-multimodal
4522
+ - sr_hse_tox21-multimodal
4523
+ - sr_mmp_tox21-multimodal
4524
+ - sr_p53_tox21-multimodal
4525
 
4526
+ ### 🎯 Bioactivity and Target Interaction
4527
 
4528
+ - cav3_t-type_calcium_channels_butkiewicz-multimodal
4529
+ - chembl_v29-multimodal
4530
+ - hiv-multimodal
4531
+ - m1_muscarinic_receptor_agonists_butkiewicz-multimodal
4532
+ - m1_muscarinic_receptor_antagonists_butkiewicz-multimodal
4533
+ - MUV_466-multimodal
4534
+ - MUV_548-multimodal
4535
+ - MUV_600-multimodal
4536
+ - MUV_644-multimodal
4537
+ - MUV_652-multimodal
4538
+ - MUV_689-multimodal
4539
+ - MUV_692-multimodal
4540
+ - MUV_712-multimodal
4541
+ - MUV_713-multimodal
4542
+ - MUV_733-multimodal
4543
+ - MUV_737-multimodal
4544
+ - MUV_810-multimodal
4545
+ - MUV_832-multimodal
4546
+ - MUV_846-multimodal
4547
+ - MUV_852-multimodal
4548
+ - MUV_858-multimodal
4549
+ - MUV_859-multimodal
4550
+ - orexin1_receptor_butkiewicz-multimodal
4551
+ - sarscov2_3clpro_diamond-multimodal
4552
+ - sarscov2_vitro_touret-multimodal
4553
+ - serine_threonine_kinase_33_butkiewicz-multimodal
4554
+ - uniprot_binding_single-multimodal
4555
+ - uniprot_binding_sites_multiple-multimodal
4556
 
4557
+ ### πŸ”¬ Computational Chemistry and Quantum Properties
4558
 
4559
+ - flashpoint-multimodal
4560
+ - mol2svg-multimodal
4561
+ - opv-multimodal
4562
+ - qm8-multimodal
4563
+ - qm9-multimodal
4564
+ - rdkit_features-multimodal
4565
+ - rdkit_features-multimodal-chunk-1
4566
+ - rdkit_features-multimodal-chunk-2
4567
+ - rdkit_features-multimodal-chunk-3
4568
+ - smiles_to_3d-multimodal
4569
+ - thermosol-multimodal
4570
 
4571
+ ### πŸ“š Chemical Knowledge Bases and Databases
 
 
 
 
 
 
4572
 
4573
+ - aminoacids-multimodal
4574
+ - chebi_20-multimodal
4575
+ - drugchat_liang_zhang_et_al-multimodal
4576
+ - mona-multimodal
4577
+ - moses-multimodal
4578
+ - RedDB-multimodal
4579
+ - zinc-multimodal
4580
 
4581
+ ## πŸ“œ License
4582
 
4583
+ All content is made open-source under the **CC BY-NC-SA 4.0** license, allowing for:
4584
+
4585
+ - βœ… Non-commercial use and sharing with attribution
4586
  - βœ… Modification and derivatives
4587
  - ⚠️ Attribution required
4588
+ - ⚠️ Non-commercial use only
4589
+
4590
+ ## πŸ“– Data Fields
4591
+
4592
+ The dataset contains the following fields for all the configurations allowing for a consistent structure across different chemical property datasets:
4593
+
4594
+ - **`IMAGE`**: The image representation of the molecule, typically in PNG format. This image is crucial for vision-based tasks and is derived from the molecular structure.
4595
+ - **`template`**: The filled template with the SMILES of the molecule and the corresponding chemical property.
4596
+ - **`template_original`**: The template or schema used for the chemical property prediction task. This field provides a structured format for the input and output data, with different templates used for ensure diversity in the tasks.
4597
+ - **`SMILES`**: The SMILES (Simplified Molecular Input Line Entry System) representation of the molecule.
4598
+ - **`SELFIES`**: The SELFIES (SELF-referencIng Embedded Strings) representation of the molecule, which is a more robust alternative to SMILES for representing chemical structures.
4599
+ - **`InChI`**: The International Chemical Identifier (InChI) representation of the molecule, providing a unique identifier for chemical substances.
4600
+ - **`IUPAC`**: The IUPAC (International Union of Pure and Applied Chemistry) name of the molecule, which is a systematic way to name chemical compounds.
4601
+ - **`split`**: The split of the dataset, indicating whether the example is part of the training, validation, or test set. This field helps in organizing the dataset for model training and evaluation.
4602
+ - **property or properties**: The specific chemical property or properties being predicted. This field varies depending on the dataset configuration and can include properties such as solubility, bioavailability, toxicity, etc. Each configuration focuses on a different set of chemical properties.
4603
+
4604
+ ## πŸ”¬ Dataset Groups Detailed Description
4605
+
4606
+ ### πŸ’Š Drug Discovery and ADMET Properties
4607
+
4608
+ The Drug Discovery and ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) group encompasses datasets focused on pharmaceutical compound development and safety assessment. This collection includes bioavailability prediction (bioavailability_ma_et_al-multimodal), blood-brain barrier permeability (BBBP-multimodal, blood_brain_barrier_martins_et_al-multimodal), intestinal permeability (caco2_wang-multimodal, pampa_ncats-multimodal), hepatic clearance (clearance_astrazeneca-multimodal), drug-induced liver injury assessment (drug_induced_liver_injury-multimodal), and various CYP450 enzyme interactions (cyp2c9_substrate_carbonmangels-multimodal, cyp2d6_substrate_carbonmangels-multimodal, cyp3a4_substrate_carbonmangels-multimodal, cyp_p450_1a2_inhibition_veith_et_al-multimodal, cyp_p450_2c19_inhibition_veith_et_al-multimodal, cyp_p450_2c9_inhibition_veith_et_al-multimodal, cyp_p450_2d6_inhibition_veith_et_al-multimodal, cyp_p450_3a4_inhibition_veith_et_al-multimodal). The group also covers crucial pharmacokinetic properties such as half-life prediction (half_life_obach-multimodal), human intestinal absorption (human_intestinal_absorption-multimodal), lipophilicity (lipophilicity-multimodal), volume of distribution (volume_of_distribution_at_steady_state_lombardo_et_al-multimodal), P-glycoprotein inhibition (p_glycoprotein_inhibition_broccatelli_et_al-multimodal), and solubility (freesolv-multimodal). These datasets are essential for early-stage drug development, helping predict whether compounds will have favorable drug-like properties before expensive clinical trials.
4609
 
4610
+ ### ⚠️ Toxicology and Safety Assessment
4611
+
4612
+ The Toxicology and Safety Assessment group focuses on predicting harmful effects of chemical compounds across various biological systems. This includes mutagenicity prediction (ames_mutagenicity-multimodal), carcinogenicity assessment (carcinogens-multimodal), acute toxicity (ld50_catmos-multimodal, ld50_zhu-multimodal), and comprehensive toxicity screening through the Tox21 initiative datasets (nr_ahr_tox21-multimodal, nr_ar_lbd_tox21-multimodal, nr_ar_tox21-multimodal, nr_aromatase_tox21-multimodal, nr_er_lbd_tox21-multimodal, nr_er_tox21-multimodal, nr_ppar_gamma_tox21-multimodal, sr_are_tox21-multimodal, sr_atad5_tox21-multimodal, sr_hse_tox21-multimodal, sr_mmp_tox21-multimodal, sr_p53_tox21-multimodal). The group also includes specialized toxicity assessments such as hERG channel blocking potential (herg_blockers-multimodal, herg_central_at_10uM-multimodal, herg_central_at_1uM-multimodal, herg_central_inhib-multimodal, herg_karim_et_al-multimodal), clinical toxicity prediction (clintox-multimodal), adverse drug reactions (SIDER-multimodal), skin reactions (skin_reaction-multimodal), and safety data assessment (sigma_aldrich_safety_data-multimodal). These datasets are crucial for environmental safety assessment and pharmaceutical safety profiling.
4613
+
4614
+ ### 🎯 Bioactivity and Target Interaction
4615
+
4616
+ The Bioactivity and Target Interaction group contains datasets focused on molecular interactions with specific biological targets. This includes enzyme inhibition studies (BACE-multimodal for Ξ²-secretase), receptor binding and modulation data from the Butkiewicz collection (cav3_t-type_calcium_channels_butkiewicz-multimodal, m1_muscarinic_receptor_agonists_butkiewicz-multimodal, m1_muscarinic_receptor_antagonists_butkiewicz-multimodal, orexin1_receptor_butkiewicz-multimodal, serine_threonine_kinase_33_butkiewicz-multimodal), and comprehensive screening datasets like MUV (Maximum Unbiased Validation) series covering various protein targets (MUV_466-multimodal, MUV_548-multimodal, MUV_600-multimodal, MUV_644-multimodal, MUV_652-multimodal, MUV_689-multimodal, MUV_692-multimodal, MUV_712-multimodal, MUV_713-multimodal, MUV_733-multimodal, MUV_737-multimodal, MUV_810-multimodal, MUV_832-multimodal, MUV_846-multimodal, MUV_852-multimodal, MUV_858-multimodal, MUV_859-multimodal). The group also includes antiviral activity data (hiv-multimodal, sarscov2_3clpro_diamond-multimodal, sarscov2_vitro_touret-multimodal), protein binding studies (uniprot_binding_single-multimodal, uniprot_binding_sites_multiple-multimodal), and comprehensive chemical bioactivity databases (chembl_v29-multimodal). These datasets enable the development of target-specific therapeutics and understanding of molecular mechanisms of action.
4617
+
4618
+ ### πŸ”¬ Computational Chemistry and Quantum Properties
4619
+
4620
+ The Computational Chemistry and Quantum Properties group encompasses datasets for predicting fundamental quantum mechanical and computational chemistry properties. This includes quantum mechanical property prediction (qm8-multimodal, qm9-multimodal), molecular descriptor calculations (rdkit_features-multimodal, rdkit_features-multimodal-chunk-1, rdkit_features-multimodal-chunk-2, rdkit_features-multimodal-chunk-3), thermodynamic properties (flashpoint-multimodal, thermosol-multimodal), and molecular visualization and structure generation (mol2svg-multimodal, smiles_to_3d-multimodal). These datasets are fundamental for computational chemistry research, enabling the prediction of molecular properties from first principles and supporting the development of new theoretical models and computational methods.
4621
+
4622
+ ### πŸ“š Chemical Knowledge Bases and Databases
4623
+
4624
+ The Chemical Knowledge Bases and Databases group contains datasets derived from established chemical and biological databases. This includes comprehensive chemical databases (chebi_20-multimodal, zinc-multimodal), mass spectrometry databases (mona-multimodal), molecular generation and chemical space exploration (moses-multimodal), conversational chemistry data (drugchat_liang_zhang_et_al-multimodal), and amino acid properties (aminoacids-multimodal). These datasets provide broad coverage of chemical space and enable the development of AI systems that can navigate and reason about diverse chemical information from established scientific databases and knowledge repositories.
4625
+
4626
+ ## πŸš€ Usage
4627
 
4628
  ```python
4629
  from datasets import load_dataset, get_dataset_config_names
4630
 
4631
  # Print available configs for the dataset
4632
+ configs = get_dataset_config_names("jablonkagroup/chempile-mlift")
4633
  print(f"Available configs: {configs}")
4634
+ # Available configs: ['BACE-multimodal', 'BBBP-multimodal', 'MUV_466-multimodal', ...
4635
 
4636
+ dataset = load_dataset("jablonkagroup/chempile-mlift", name=configs[0])
4637
+ # Loading config: BACE-multimodal
4638
 
4639
  print(dataset)
4640
  # DatasetDict({
4641
+ # train: Dataset({
4642
+ # features: ['IMAGE', 'template', 'template_original', 'SMILES', ...
4643
+ # num_rows: 5440
4644
+ # })
4645
+ # validation: Dataset({
4646
+ # features: ['IMAGE', 'template', 'template_original', 'SMILES', ...
4647
+ # num_rows: 480
4648
+ # })
4649
+ # test: Dataset({
4650
+ # features: ['IMAGE', 'template', 'template_original', 'SMILES', ...
4651
+ # })
 
4652
  # })
4653
 
4654
  split_name = list(dataset.keys())[0]
4655
  sample = dataset[split_name][0]
4656
  print(sample)
4657
  # {
4658
+ # 'IMAGE': <PIL.PngImagePlugin.PngImageFile ...,
4659
+ # 'template': 'The chemical with the SMILES ...,
4660
+ # 'template_original': 'The {#compound|chemical!} ...',
4661
+ # 'SMILES': 'Cc1ccccc1-c1ccc2nc(N)c(C[C@@H](C)C(=O)...',
4662
+ # 'SMILES_ORIGINAL': 'Cc1ccccc1-c1ccc2nc(N)c(C[C@@H]...',
4663
+ # 'SELFIES': '[C][C][=C][C][=C][C][=C][Ring1]...',
4664
+ # 'InChI': 'InChI=1S/C27H33N3O2/c1-17-7-5-6-8-...',
4665
+ # 'IUPAC': '(2R)-3-[2-amino-6-(2-methylphenyl)...',
4666
+ # 'split': 'train',
4667
+ # 'pIC50': 9.1549015,
4668
+ # 'BACE_inhibition': 1
4669
  # }
4670
  ```
4671
 
4672
  ## 🎯 Use Cases
4673
 
4674
+ - **πŸ–ΌοΈ Multimodal Chemical Property Prediction**: Training vision-language models to predict molecular properties using both molecular images and textual descriptions
4675
+ - **πŸ’Š Drug Discovery**: Building systems for pharmaceutical compound screening using visual molecular representations
4676
+ - **⚠️ Safety Assessment**: Developing multimodal models for toxicity and environmental impact prediction
4677
+ - **πŸ”¬ Materials Design**: Creating AI tools that leverage both visual and textual molecular information for materials science
4678
+ - **πŸ“– Scientific Multimodal Understanding**: Training models to understand and reason about chemical information across multiple modalities
4679
 
4680
  ## ⚠️ Limitations & Considerations
4681
 
4682
+ - **Scope**: Focused on chemistry and materials science; domain-specific terminology and concepts
4683
+ - **Quality**: Variable quality across sources; expert curation applied but some noise may remain
4684
+ - **Bias**: Reflects biases present in chemical databases and scientific literature
4685
+ - **License**: Non-commercial use only under CC BY-NC-SA 4.0
4686
+ - **Language**: Primarily English content
4687
+ - **Completeness**: Some datasets may have missing values or incomplete property annotations
4688
+ - **Image Quality**: Molecular images are automatically generated and may vary in visual quality
4689
 
4690
  ## πŸ› οΈ Data Processing Pipeline
4691
 
4692
+ 1. **Collection**: Automated extraction from well-known chemistry datasets (QM9, RDKit, Tox21, etc.)
4693
+ 2. **Standardization**: Consistent formatting and SMILES representation across all configurations
4694
+ 3. **Image Generation**: Creation of molecular structure images from SMILES representations
4695
+ 4. **Template Generation**: Conversion of structured data into natural language templates
4696
+ 5. **Quality Control**: Expert curation and validation of chemical property representations
4697
+ 6. **Deduplication**: Removal of duplicate entries and data cleaning
4698
  7. **Validation**: Train/validation/test splits and quality checks
4699
 
4700
  ## πŸ—οΈ ChemPile Collection
4701
 
4702
+ This dataset is part of the **ChemPile** collection, a comprehensive open dataset containing over 75 billion tokens of curated chemical data for training and evaluating general-purpose models in the chemical sciences.
4703
 
4704
  ### Collection Overview
4705
+
4706
  - **πŸ“Š Scale**: 75+ billion tokens across multiple modalities
4707
+ - **🧬 Modalities**: Structured representations (SMILES, SELFIES, IUPAC, InChI), scientific text, executable code, and molecular images
4708
  - **🎯 Design**: Integrates foundational educational knowledge with specialized scientific literature
4709
  - **πŸ”¬ Curation**: Extensive expert curation and validation
4710
  - **πŸ“ˆ Benchmarking**: Standardized train/validation/test splits for robust evaluation
 
4727
 
4728
  - **Paper**: [arXiv:2505.12534](https://arxiv.org/abs/2505.12534)
4729
  - **Website**: [ChemPile Project](https://chempile.lamalab.org/)
4730
+ - **Dataset**: [Hugging Face](https://huggingface.co/datasets/jablonkagroup/chempile-mlift)
4731
  - **Issues**: Please report data issues or questions via the Hugging Face dataset page
4732
 
4733
  ---