fixed config
Browse files- bernice-pretrain-data.py +19 -19
bernice-pretrain-data.py
CHANGED
|
@@ -61,27 +61,27 @@ _BASE_DATA_URL = "data"
|
|
| 61 |
class BernicePretrainData(datasets.GeneratorBasedBuilder):
|
| 62 |
"""Tweet IDs for the 2.5 billion multilingual tweets used to train Bernice, a Twitter encoder."""
|
| 63 |
VERSION = datasets.Version("1.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def _info(self):
|
| 66 |
-
# This is an example of a dataset with multiple configurations.
|
| 67 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 68 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 69 |
-
|
| 70 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 71 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 72 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 73 |
-
|
| 74 |
-
# You will be able to load one or the other configurations in the following list with
|
| 75 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 76 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 77 |
-
BUILDER_CONFIGS = [
|
| 78 |
-
datasets.BuilderConfig(name="all", version=VERSION,
|
| 79 |
-
description="Includes all tweets"),
|
| 80 |
-
datasets.BuilderConfig(name="indic", version=VERSION,
|
| 81 |
-
description="Only the Indic languages, plus `undefined'"),
|
| 82 |
-
]
|
| 83 |
-
|
| 84 |
-
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 85 |
|
| 86 |
return datasets.DatasetInfo(
|
| 87 |
# This is the description that will appear on the datasets page.
|
|
|
|
| 61 |
class BernicePretrainData(datasets.GeneratorBasedBuilder):
|
| 62 |
"""Tweet IDs for the 2.5 billion multilingual tweets used to train Bernice, a Twitter encoder."""
|
| 63 |
VERSION = datasets.Version("1.0.0")
|
| 64 |
+
# This is an example of a dataset with multiple configurations.
|
| 65 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 66 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 67 |
+
|
| 68 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
| 69 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 70 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 71 |
+
|
| 72 |
+
# You will be able to load one or the other configurations in the following list with
|
| 73 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 74 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 75 |
+
BUILDER_CONFIGS = [
|
| 76 |
+
datasets.BuilderConfig(name="all", version=VERSION,
|
| 77 |
+
description="Includes all tweets"),
|
| 78 |
+
datasets.BuilderConfig(name="indic", version=VERSION,
|
| 79 |
+
description="Only the Indic languages, plus `undefined'"),
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 83 |
|
| 84 |
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
return datasets.DatasetInfo(
|
| 87 |
# This is the description that will appear on the datasets page.
|