--- language: - en license: mit task_categories: - fill-mask tags: - pretraining - language-modeling - encoder - multilingual --- # mmBERT Pre-training Data P3 [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2509.06888) [![Models](https://img.shields.io/badge/🤗%20Hugging%20Face-2%20Models-blue)](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4) [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/mmBERT) > **Phase 1 of 3**: Diverse multilingual pre-training data mixture (trained for 2.3T tokens) used to train the mmBERT model suite. NOTE: **this is only P3 of the pre-training data due to HF limits, you need to download and combine all three into one folder** This dataset contains the pre-training phase data used to train all [mmBERT encoder models](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4). The data is provided in **MDS format** ready for use with [Composer](https://github.com/mosaicml/composer) and the [ModernBERT training repository](https://github.com/answerdotai/ModernBERT). ## 📊 Data Composition | Data Source | Tokens (B) | Percentage | Description | |:------------|:-----------|:-----------|:------------| | FineWeb2 | 1,196.6 | 60.2% | High-quality multilingual web crawl data | | DCLM | 600.0 | 30.2% | High-quality English web crawl data | | Starcoder | 100.6 | 5.1% | Code repositories and files | | Arxiv | 27.8 | 1.4% | Academic preprints | | StackExchange | 18.6 | 0.9% | Q&A forums | | Tulu Flan | 15.3 | 0.8% | Instruction-following data | | Dolmino Math | 11.2 | 0.6% | Mathematical content | | PeS2o | 8.4 | 0.4% | Scientific papers | | Wikipedia (MegaWika) | 4.7 | 0.2% | Encyclopedia articles | | Books | 4.3 | 0.2% | Literature and reference books | | StackExchange (Dolmino) | 1.4 | 0.1% | Curated Q&A content | | **Total** | **1,989.0** | **100.0%** | Diverse mixture for foundation training | ## 🌍 Language Coverage This phase covers **60 languages** plus code, with an inverse temperature sampling schedule starting at τ=0.7. Languages include: - **High-resource**: English (34.5%), Russian (5.8%), German (4.4%), Spanish (4.5%), French (4.0%), Chinese (5.2%) - **Mid-resource**: Italian, Portuguese, Japanese, Dutch, Polish, and 45 others - **Scripts**: Latin, Cyrillic, Arabic, Chinese, Japanese, Thai, and many more ## 🚀 Usage For pre-training, see the ModernBERT repo: https://github.com/AnswerDotAI/ModernBERT ### Direct Access Use the script at [this link](https://github.com/JHU-CLSP/mmBERT/blob/main/data/online_streaming.py) to load any section of the dataset on the fly. This will fail if you try to access too many samples though, due to HF rate-limiting. To download the full dataset, use HF Hub's [Snapshot Download](https://huggingface.co/docs/huggingface_hub/v1.0.0.rc6/en/package_reference/file_download#huggingface_hub.snapshot_download). # Process your data... ``` ## 🔗 Related Resources - **Models**: [mmBERT Model Suite](https://huggingface.co/collections/jhu-clsp/mmbert-a-modern-multilingual-encoder-68b725831d7c6e3acc435ed4) - **Phase 2**: [Mid-training Data](https://huggingface.co/datasets/jhu-clsp/mmbert-midtraining) (600B tokens) - **Phase 3**: [Decay Phase Data](https://huggingface.co/datasets/jhu-clsp/mmbert-decay) (100B tokens) - **Checkpoints**: [Training Checkpoints](https://huggingface.co/datasets/jhu-clsp/mmbert-checkpoints) - **Paper**: [Arxiv link](https://arxiv.org/abs/2509.06888) - **Code**: [GitHub Repository](https://github.com/jhu-clsp/mmBERT) ## Citation ```bibtex @misc{marone2025mmbertmodernmultilingualencoder, title={mmBERT: A Modern Multilingual Encoder with Annealed Language Learning}, author={Marc Marone and Orion Weller and William Fleshman and Eugene Yang and Dawn Lawrie and Benjamin Van Durme}, year={2025}, eprint={2509.06888}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2509.06888}, } ```