Datasets:
Commit
·
baa2e9a
1
Parent(s):
03a8789
Update info
Browse files
README.md
CHANGED
|
@@ -4,38 +4,36 @@ task_categories:
|
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
tags:
|
| 7 |
-
-
|
| 8 |
- law
|
| 9 |
-
pretty_name:
|
| 10 |
---
|
| 11 |
|
| 12 |
-
# Dataset Card for
|
| 13 |
|
| 14 |
## Dataset Description
|
| 15 |
|
| 16 |
-
- **Paper: [Parameter-Efficient Legal Domain Adaptation](https://
|
| 17 |
- **Point of Contact: [email protected]**
|
| 18 |
|
| 19 |
### Dataset Summary
|
| 20 |
|
| 21 |
-
|
| 22 |
-
Reddit dataset. The dataset maps the text and title of each legal question posted into one of eleven classes, based on the original Reddit
|
| 23 |
-
post's "flair" (i.e., tag). Questions are typically informal and use non-legal-specific language. Per the Legal Advice Reddit rules, posts
|
| 24 |
-
must be about actual personal circumstances or situations. We limit the number of labels to the top eleven classes and remove the other
|
| 25 |
-
samples from the dataset.
|
| 26 |
-
|
| 27 |
|
| 28 |
### Citation Information
|
| 29 |
|
| 30 |
```
|
| 31 |
-
@
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
}
|
| 41 |
```
|
|
|
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
tags:
|
| 7 |
+
- stackexchange
|
| 8 |
- law
|
| 9 |
+
pretty_name: Law Stack Exchange
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# Dataset Card for Law Stack Exchange Dataset
|
| 13 |
|
| 14 |
## Dataset Description
|
| 15 |
|
| 16 |
+
- **Paper: [Parameter-Efficient Legal Domain Adaptation](https://aclanthology.org/2022.nllp-1.10/)**
|
| 17 |
- **Point of Contact: [email protected]**
|
| 18 |
|
| 19 |
### Dataset Summary
|
| 20 |
|
| 21 |
+
Dataset from the Law Stack Exchange, as used in "Parameter-Efficient Legal Domain Adaptation".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
### Citation Information
|
| 24 |
|
| 25 |
```
|
| 26 |
+
@inproceedings{li-etal-2022-parameter,
|
| 27 |
+
title = "Parameter-Efficient Legal Domain Adaptation",
|
| 28 |
+
author = "Li, Jonathan and
|
| 29 |
+
Bhambhoria, Rohan and
|
| 30 |
+
Zhu, Xiaodan",
|
| 31 |
+
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
|
| 32 |
+
month = dec,
|
| 33 |
+
year = "2022",
|
| 34 |
+
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
|
| 35 |
+
publisher = "Association for Computational Linguistics",
|
| 36 |
+
url = "https://aclanthology.org/2022.nllp-1.10",
|
| 37 |
+
pages = "119--129",
|
| 38 |
}
|
| 39 |
```
|