Datasets:
ArXiv:
License:
Upload folder using huggingface_hub
Browse files- src/data_scripts/trainvalsplit.py +141 -0
- src/utilities/h4dlib/h4dlib/data/__pycache__/cocohelpers.cpython-39.pyc +0 -0
- src/utilities/h4dlib/h4dlib/data/cocohelpers.py +1568 -0
- src/xview/category_id_mapping.json +62 -0
- src/xview/slice_xview.py +21 -0
- src/xview/xview_class_labels.txt +60 -0
- src/xview/xview_to_coco.py +165 -0
src/data_scripts/trainvalsplit.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
trainvalsplit.py is a script that splits an MS COCO formatted dataset into train and val
|
| 3 |
+
partitions. For sample usage, run from command line:
|
| 4 |
+
|
| 5 |
+
Example:
|
| 6 |
+
python trainvalsplit.py --help
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
# Standard Library imports:
|
| 10 |
+
import argparse
|
| 11 |
+
import sys
|
| 12 |
+
import subprocess
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
# h4dlib imports:
|
| 16 |
+
# import _import_helper # pylint: disable=unused-import # noqa: F401
|
| 17 |
+
# PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8")
|
| 18 |
+
try:
|
| 19 |
+
PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8")
|
| 20 |
+
except subprocess.CalledProcessError:
|
| 21 |
+
print("Error: Not inside a Git repository.")
|
| 22 |
+
PROJ_ROOT = None
|
| 23 |
+
|
| 24 |
+
print("PROJ ROOOOOOT: ", PROJ_ROOT)
|
| 25 |
+
h4dlib_path = (Path(PROJ_ROOT) / "src/utilities/h4dlib").resolve()
|
| 26 |
+
print(h4dlib_path)
|
| 27 |
+
assert h4dlib_path.exists()
|
| 28 |
+
if str(h4dlib_path) not in sys.path:
|
| 29 |
+
sys.path.append(str(h4dlib_path))
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
from h4dlib.data.cocohelpers import CocoClassDistHelper, CocoJsonBuilder, split
|
| 33 |
+
|
| 34 |
+
# Used to check the results of the split--all classes in both splits
|
| 35 |
+
# should have at least this many annotations:
|
| 36 |
+
_CLASS_COUNT_THRESHOLD = 0
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def create_split(
|
| 40 |
+
input_json: Path,
|
| 41 |
+
output_path: Path,
|
| 42 |
+
output_json_name: str,
|
| 43 |
+
seed: int,
|
| 44 |
+
test_size: float = 0.2,
|
| 45 |
+
) -> CocoClassDistHelper:
|
| 46 |
+
"""
|
| 47 |
+
Creates train/val split for the coco-formatted dataset defined by input_json.
|
| 48 |
+
|
| 49 |
+
params:
|
| 50 |
+
input_json: full path or Path object to coco-formatted input json file.
|
| 51 |
+
output_path: full path or Path object to directory where outputted json will be
|
| 52 |
+
saved. output_json_name:
|
| 53 |
+
"""
|
| 54 |
+
coco = CocoClassDistHelper(input_json)
|
| 55 |
+
train_img_ids, val_img_ids = split(
|
| 56 |
+
coco.img_ids, test_size=test_size, random_state=seed
|
| 57 |
+
)
|
| 58 |
+
train_counts, train_percents = coco.get_class_dist(train_img_ids)
|
| 59 |
+
val_counts, val_percents = coco.get_class_dist(val_img_ids)
|
| 60 |
+
|
| 61 |
+
# Generate coco-formatted json's for train and val:
|
| 62 |
+
def generate_coco_json(coco, split_type, img_ids):
|
| 63 |
+
coco_builder = CocoJsonBuilder(
|
| 64 |
+
coco.cats,
|
| 65 |
+
dest_path=output_path,
|
| 66 |
+
dest_name=output_json_name.format(split_type),
|
| 67 |
+
)
|
| 68 |
+
for idx, img_id in enumerate(img_ids):
|
| 69 |
+
coco_builder.add_image(coco.imgs[img_id], coco.imgToAnns[img_id])
|
| 70 |
+
coco_builder.save()
|
| 71 |
+
|
| 72 |
+
generate_coco_json(coco, "train", train_img_ids)
|
| 73 |
+
generate_coco_json(coco, "val", val_img_ids)
|
| 74 |
+
return coco
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def verify_output(
|
| 78 |
+
original_coco: CocoClassDistHelper, output_path: Path, output_json_name: str
|
| 79 |
+
) -> None:
|
| 80 |
+
"""
|
| 81 |
+
Verify that the outputted json's for the train/val split can be loaded, and
|
| 82 |
+
have correct number of annotations, and minimum count for each class meets
|
| 83 |
+
our threshold.
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
def verify_split_part(output_json_name, split_part):
|
| 87 |
+
json_path = output_path / output_json_name.format(split_part)
|
| 88 |
+
print(f"Checking if we can load json via coco api:{json_path}...")
|
| 89 |
+
coco = CocoClassDistHelper(json_path)
|
| 90 |
+
counts, _ = coco.get_class_dist()
|
| 91 |
+
assert min(counts.values()) >= _CLASS_COUNT_THRESHOLD, (
|
| 92 |
+
f"min class count ({min(counts.values())}) is "
|
| 93 |
+
+ f"lower than threshold of {_CLASS_COUNT_THRESHOLD}"
|
| 94 |
+
)
|
| 95 |
+
print(f"{split_part} class counts: ", counts)
|
| 96 |
+
return coco
|
| 97 |
+
|
| 98 |
+
train_coco = verify_split_part(output_json_name, "train")
|
| 99 |
+
val_coco = verify_split_part(output_json_name, "val")
|
| 100 |
+
assert len(original_coco.imgs) == len(train_coco.imgs) + len(
|
| 101 |
+
val_coco.imgs
|
| 102 |
+
), "Num Images in original data should equal sum of imgs in splits."
|
| 103 |
+
assert len(original_coco.anns) == len(train_coco.anns) + len(
|
| 104 |
+
val_coco.anns
|
| 105 |
+
), "Num annotations in original data should equal sum of those in splits."
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def main(args: argparse.Namespace):
|
| 109 |
+
"""
|
| 110 |
+
Creates train/val split and verifies output.
|
| 111 |
+
params:
|
| 112 |
+
opt: command line options (there are none right now)
|
| 113 |
+
output_json_name: format-string of output file names, with a '{}'
|
| 114 |
+
style placeholder where split type will be inserted.
|
| 115 |
+
"""
|
| 116 |
+
input_json = Path(args.input_json).resolve()
|
| 117 |
+
assert input_json.exists(), str(input_json)
|
| 118 |
+
assert input_json.is_file(), str(input_json)
|
| 119 |
+
|
| 120 |
+
output_path = Path(args.output_dir).resolve()
|
| 121 |
+
assert output_path.is_dir(), str(output_path)
|
| 122 |
+
output_path.mkdir(exist_ok=True, parents=True)
|
| 123 |
+
output_json_name = input_json.stem.replace("_full", "") + "_{}.json"
|
| 124 |
+
original_coco = create_split(
|
| 125 |
+
input_json, output_path, output_json_name, args.seed, args.val_split_size
|
| 126 |
+
)
|
| 127 |
+
verify_output(original_coco, output_path, output_json_name)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
parser = argparse.ArgumentParser()
|
| 132 |
+
parser.add_argument("--val_split_size", type=float, default=0.2)
|
| 133 |
+
parser.add_argument(
|
| 134 |
+
"--seed",
|
| 135 |
+
type=int,
|
| 136 |
+
help="Random seed. Use split_search.py to find a seed that generates a good split",
|
| 137 |
+
)
|
| 138 |
+
parser.add_argument("--input_json", type=Path, help="Input json path")
|
| 139 |
+
parser.add_argument("--output_dir", type=Path, help="Path to output json")
|
| 140 |
+
args = parser.parse_args()
|
| 141 |
+
main(args)
|
src/utilities/h4dlib/h4dlib/data/__pycache__/cocohelpers.cpython-39.pyc
ADDED
|
Binary file (43.1 kB). View file
|
|
|
src/utilities/h4dlib/h4dlib/data/cocohelpers.py
ADDED
|
@@ -0,0 +1,1568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
cocohelpers is a module with helper classes and functions related to the MS
|
| 3 |
+
COCO API. Includes helpers for building COCO formatted json, inspecting class
|
| 4 |
+
distribution, and generating a train/val split.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
# Standard Library imports:
|
| 8 |
+
import json
|
| 9 |
+
import random
|
| 10 |
+
from collections import Counter, defaultdict
|
| 11 |
+
from copy import deepcopy
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from shutil import copy
|
| 15 |
+
from typing import Any, Dict, List, OrderedDict, Tuple
|
| 16 |
+
|
| 17 |
+
# 3rd Party imports:
|
| 18 |
+
import numpy as np
|
| 19 |
+
from pycocotools.coco import COCO
|
| 20 |
+
|
| 21 |
+
__all__ = ["CocoJsonBuilder", "COCOShrinker", "CocoClassDistHelper", "split"]
|
| 22 |
+
|
| 23 |
+
full_categories = {
|
| 24 |
+
11: "Fixed-wing Aircraft",
|
| 25 |
+
12: "Small Aircraft",
|
| 26 |
+
13: "Cargo Plane",
|
| 27 |
+
15: "Helicopter",
|
| 28 |
+
16: "S&R Helicopter",
|
| 29 |
+
17: "Passenger Vehicle",
|
| 30 |
+
18: "Small Car",
|
| 31 |
+
19: "Bus",
|
| 32 |
+
20: "Pickup Truck",
|
| 33 |
+
21: "Utility Truck",
|
| 34 |
+
22: "Ambulance",
|
| 35 |
+
23: "Truck",
|
| 36 |
+
24: "Cargo Truck",
|
| 37 |
+
25: "Truck w/Box",
|
| 38 |
+
26: "Truck Tractor",
|
| 39 |
+
27: "Trailer",
|
| 40 |
+
28: "Truck w/Flatbed",
|
| 41 |
+
29: "Truck w/Liquid",
|
| 42 |
+
32: "Crane Truck",
|
| 43 |
+
33: "Railway Vehicle",
|
| 44 |
+
34: "Passenger Car",
|
| 45 |
+
35: "Cargo Car",
|
| 46 |
+
36: "Flat Car",
|
| 47 |
+
37: "Tank car",
|
| 48 |
+
38: "Locomotive",
|
| 49 |
+
40: "Maritime Vessel",
|
| 50 |
+
41: "Motorboat",
|
| 51 |
+
42: "Sailboat",
|
| 52 |
+
44: "Tugboat",
|
| 53 |
+
45: "Barge",
|
| 54 |
+
46: "Crane Vessel",
|
| 55 |
+
47: "Fishing Vessel",
|
| 56 |
+
48: "Cruise Ship",
|
| 57 |
+
49: "Ferry",
|
| 58 |
+
50: "Yacht",
|
| 59 |
+
51: "Container Ship",
|
| 60 |
+
52: "Oil Tanker",
|
| 61 |
+
53: "Engineering Vehicle",
|
| 62 |
+
54: "Tower crane",
|
| 63 |
+
55: "Container Crane",
|
| 64 |
+
56: "Reach Stacker",
|
| 65 |
+
57: "Straddle Carrier",
|
| 66 |
+
58: "Container Handler",
|
| 67 |
+
59: "Mobile Crane",
|
| 68 |
+
60: "Dump Truck",
|
| 69 |
+
61: "Haul Truck",
|
| 70 |
+
62: "Tractor",
|
| 71 |
+
63: "Front loader/Bulldozer",
|
| 72 |
+
64: "Excavator",
|
| 73 |
+
65: "Cement Mixer",
|
| 74 |
+
66: "Ground Grader",
|
| 75 |
+
67: "Scraper",
|
| 76 |
+
69: "Power Shovel",
|
| 77 |
+
70: "Bucket-wheel Excavator",
|
| 78 |
+
71: "Hut/Tent",
|
| 79 |
+
72: "Shed",
|
| 80 |
+
73: "Building",
|
| 81 |
+
74: "Aircraft Hangar",
|
| 82 |
+
75: "UNK1",
|
| 83 |
+
76: "Damaged Building",
|
| 84 |
+
77: "Facility",
|
| 85 |
+
78: "Stadium",
|
| 86 |
+
79: "Construction Site",
|
| 87 |
+
81: "Marina",
|
| 88 |
+
82: "UNK2",
|
| 89 |
+
83: "Vehicle Lot",
|
| 90 |
+
84: "Helipad",
|
| 91 |
+
86: "Storage Tank",
|
| 92 |
+
87: "UNK3",
|
| 93 |
+
89: "Shipping Container Lot",
|
| 94 |
+
91: "Shipping Container",
|
| 95 |
+
93: "Pylon",
|
| 96 |
+
94: "Tower",
|
| 97 |
+
96: "Water Tower",
|
| 98 |
+
97: "Wind Turbine",
|
| 99 |
+
98: "Lighthouse",
|
| 100 |
+
99: "Cooling Tower",
|
| 101 |
+
100: "Smokestack",
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class ReIndex:
|
| 106 |
+
"""
|
| 107 |
+
A class used to reindex categories.
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
def __init__(self, coco):
|
| 111 |
+
self.cats = coco.dataset["categories"]
|
| 112 |
+
self.anns = coco.dataset["annotations"]
|
| 113 |
+
self.id2name = {cat["id"]: cat["name"] for i, cat in enumerate(self.cats)}
|
| 114 |
+
self.id2id = {cat["id"]: i + 1 for i, cat in enumerate(self.cats)}
|
| 115 |
+
|
| 116 |
+
self.new_cats = [
|
| 117 |
+
{
|
| 118 |
+
"supercategory": cat["supercategory"],
|
| 119 |
+
"id": self.id2id[cat["id"]],
|
| 120 |
+
"name": cat["name"],
|
| 121 |
+
}
|
| 122 |
+
for cat in self.cats
|
| 123 |
+
]
|
| 124 |
+
|
| 125 |
+
print("new cats: ", self.new_cats)
|
| 126 |
+
|
| 127 |
+
self.new_anns = [
|
| 128 |
+
{
|
| 129 |
+
"segmentation": ann["segmentation"],
|
| 130 |
+
"bbox": ann["bbox"],
|
| 131 |
+
"area": ann["area"],
|
| 132 |
+
"id": ann["id"],
|
| 133 |
+
"image_id": ann["image_id"],
|
| 134 |
+
"category_id": self.id2id[ann["category_id"]],
|
| 135 |
+
"iscrowd": 0, # matters for coco_eval
|
| 136 |
+
}
|
| 137 |
+
for ann in self.anns
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
def coco_has_zero_as_background_id(coco):
|
| 141 |
+
"""Return true if category_id=0 is either unused, or used for background class. Else return false."""
|
| 142 |
+
cat_id_zero_nonbackground_exists = False
|
| 143 |
+
for cat in self.cats:
|
| 144 |
+
if cat["id"] == 0:
|
| 145 |
+
if cat["name"] not in ["background", "__background__"]:
|
| 146 |
+
cat_id_zero_nonbackground_exists = True
|
| 147 |
+
break
|
| 148 |
+
# id:0 isn't used for any categories, so by default can assume it can be used for background class:
|
| 149 |
+
# if not cat_id_zero_nonbackground_exists:
|
| 150 |
+
# return True
|
| 151 |
+
return not cat_id_zero_nonbackground_exists
|
| 152 |
+
|
| 153 |
+
# # true if category_id=0 is either unused, or used for background class. Else return false.
|
| 154 |
+
# if 0 not in list(self.id2id.keys()):
|
| 155 |
+
# self.cat_id_zero_nonbackground_exists = self.id2name[0] not in ["background", "__background__"]
|
| 156 |
+
# if cat["id"] == 0:
|
| 157 |
+
# if cat["name"] not in ["background", "__background__"]:
|
| 158 |
+
# cat_id_zero_nonbackground_exists = True
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class CocoJsonBuilder(object):
|
| 162 |
+
"""
|
| 163 |
+
A class used to help build coco-formatted json from scratch.
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
def __init__(
|
| 167 |
+
self,
|
| 168 |
+
categories: List[Dict[str, object]],
|
| 169 |
+
subset_cat_ids: list = [],
|
| 170 |
+
dest_path="",
|
| 171 |
+
dest_name="",
|
| 172 |
+
keep_empty_images=False,
|
| 173 |
+
):
|
| 174 |
+
"""
|
| 175 |
+
Args:
|
| 176 |
+
|
| 177 |
+
categories: this can be the COCO.dataset['categories'] property if you
|
| 178 |
+
are building a COCO json derived from an existing COCO json and don't
|
| 179 |
+
want to modify the classes. It's a list of dictionary objects. Each dict has
|
| 180 |
+
three keys: "id":int = category id, "supercatetory": str = name of parent
|
| 181 |
+
category, and a "name": str = name of category.
|
| 182 |
+
|
| 183 |
+
dest_path: str or pathlib.Path instance, holding the path to directory where
|
| 184 |
+
the new COCO formatted annotations
|
| 185 |
+
file (dest_name) will be saved.
|
| 186 |
+
|
| 187 |
+
dest_name: str of the filename where the generated json will be saved to.
|
| 188 |
+
"""
|
| 189 |
+
self.categories = categories
|
| 190 |
+
self.subset_cat_ids = subset_cat_ids
|
| 191 |
+
self.new_categories = []
|
| 192 |
+
self.reindex_cat_id = {} # maps from old to new cat id
|
| 193 |
+
if self.subset_cat_ids:
|
| 194 |
+
cat_counter = 1 # one-indexing
|
| 195 |
+
for cat in self.categories:
|
| 196 |
+
if cat["id"] in self.subset_cat_ids:
|
| 197 |
+
new_cat = deepcopy(cat)
|
| 198 |
+
new_cat["id"] = cat_counter
|
| 199 |
+
self.reindex_cat_id[cat["id"]] = cat_counter
|
| 200 |
+
cat_counter += 1
|
| 201 |
+
self.new_categories.append(new_cat)
|
| 202 |
+
else:
|
| 203 |
+
print(f"skipping cat_id {cat['id']}")
|
| 204 |
+
print("New cats length: ", len(self.new_categories))
|
| 205 |
+
self.keep_empty_images = keep_empty_images
|
| 206 |
+
self.dest_path = Path(dest_path)
|
| 207 |
+
self.dest_name = dest_name
|
| 208 |
+
self.images = []
|
| 209 |
+
self.annotations: List[Dict[str, Any]] = []
|
| 210 |
+
dest_path = Path(dest_path)
|
| 211 |
+
dest_path.mkdir(parents=True, exist_ok=True)
|
| 212 |
+
# assert self.dest_path.exists(), f"dest_path: '{self.dest_path}' does not exist"
|
| 213 |
+
# assert (
|
| 214 |
+
# self.dest_path.is_dir()
|
| 215 |
+
# ), f"dest_path: '{self.dest_path}' is not a directory"
|
| 216 |
+
|
| 217 |
+
@staticmethod
|
| 218 |
+
def class_remap(source_coco: COCO, new_cats: list[dict], class_remap: dict[int, int]):
|
| 219 |
+
"""
|
| 220 |
+
Remaps the categories and annotations.
|
| 221 |
+
|
| 222 |
+
:param new_cats: new categories
|
| 223 |
+
:type new_cats: dict
|
| 224 |
+
:param class_remap: maps ids from original categories (self.categories) to new categories
|
| 225 |
+
:type class_remap: dict
|
| 226 |
+
"""
|
| 227 |
+
source_anns = source_coco.dataset["annotations"]
|
| 228 |
+
source_imgs = source_coco.dataset["images"]
|
| 229 |
+
source_cats = source_coco.dataset["categories"]
|
| 230 |
+
|
| 231 |
+
child_id_to_parent_id = class_remap
|
| 232 |
+
print(f"remap child_id_to_parent_id")
|
| 233 |
+
print(child_id_to_parent_id)
|
| 234 |
+
|
| 235 |
+
child_id_to_parent_name = {
|
| 236 |
+
cat["id"]: (
|
| 237 |
+
child_id_to_parent_id[cat["id"]] if cat["id"] in child_id_to_parent_id else None
|
| 238 |
+
)
|
| 239 |
+
for cat in source_cats
|
| 240 |
+
}
|
| 241 |
+
print(f"remap child_id_to_parent_name")
|
| 242 |
+
print(child_id_to_parent_name)
|
| 243 |
+
|
| 244 |
+
new_imgs = deepcopy(source_imgs)
|
| 245 |
+
new_anns = [
|
| 246 |
+
{
|
| 247 |
+
"segmentation": ann["segmentation"],
|
| 248 |
+
"bbox": ann["bbox"],
|
| 249 |
+
"area": ann["area"],
|
| 250 |
+
"id": ann["id"],
|
| 251 |
+
"image_id": ann["image_id"],
|
| 252 |
+
"category_id": child_id_to_parent_id[ann["category_id"]],
|
| 253 |
+
"iscrowd": 0, # matters for coco_eval
|
| 254 |
+
}
|
| 255 |
+
for ann in source_anns
|
| 256 |
+
if ann["category_id"] in list(child_id_to_parent_id.keys())
|
| 257 |
+
]
|
| 258 |
+
print("len source anns: ", len(source_anns))
|
| 259 |
+
print("len new anns: ", len(new_anns))
|
| 260 |
+
|
| 261 |
+
dataset = {"categories": new_cats, "images": new_imgs, "annotations": new_anns}
|
| 262 |
+
return dataset
|
| 263 |
+
|
| 264 |
+
def generate_info(self) -> Dict[str, str]:
|
| 265 |
+
"""returns: dictionary of descriptive info about the dataset."""
|
| 266 |
+
info_json = {
|
| 267 |
+
"description": "XView Dataset",
|
| 268 |
+
"url": "http://xviewdataset.org/",
|
| 269 |
+
"version": "1.0",
|
| 270 |
+
"year": 2018,
|
| 271 |
+
"contributor": "Defense Innovation Unit Experimental (DIUx)",
|
| 272 |
+
"date_created": "2018/02/22",
|
| 273 |
+
}
|
| 274 |
+
return info_json
|
| 275 |
+
|
| 276 |
+
def generate_licenses(self) -> List[Dict[str, Any]]:
|
| 277 |
+
"""Returns the json hash for the licensing info."""
|
| 278 |
+
return [
|
| 279 |
+
{
|
| 280 |
+
"url": "http://creativecommons.org/licenses/by-nc-sa/4.0/",
|
| 281 |
+
"id": 1,
|
| 282 |
+
"name": "Attribution-NonCommercial-ShareAlike License",
|
| 283 |
+
}
|
| 284 |
+
]
|
| 285 |
+
|
| 286 |
+
def add_image(self, img: Dict[str, Any], annotations: List[Dict]) -> None:
|
| 287 |
+
"""
|
| 288 |
+
Add an image and it's annotations to the coco json.
|
| 289 |
+
|
| 290 |
+
Args:
|
| 291 |
+
img: A dictionary of image attributes. This gets added verbatim to the
|
| 292 |
+
json, so in typical use cases when you are building a coco json from an
|
| 293 |
+
existing coco json, you would just pull the entire coco.imgs[img_id]
|
| 294 |
+
object and pass it as the value for this parameter.
|
| 295 |
+
annotations: annotations of the image to add. list of dictionaries.
|
| 296 |
+
Each dict is one annotation, it contains all the properties of the
|
| 297 |
+
annotation that should appear in the coco json. For example, when using
|
| 298 |
+
this json builder to build JSON's for a train/val split, the
|
| 299 |
+
annotations can be copied straight from the coco object for the full
|
| 300 |
+
dataset, and passed into this parameter.
|
| 301 |
+
|
| 302 |
+
Returns: None
|
| 303 |
+
"""
|
| 304 |
+
temp_anns = []
|
| 305 |
+
for ann in annotations:
|
| 306 |
+
# if builder was initialized with subset_cat_ids, only the corresponding annotations
|
| 307 |
+
# are re-indexed and added
|
| 308 |
+
if self.subset_cat_ids:
|
| 309 |
+
if ann["category_id"] in self.subset_cat_ids:
|
| 310 |
+
new_ann = deepcopy(ann)
|
| 311 |
+
new_ann["category_id"] = self.reindex_cat_id[ann["category_id"]]
|
| 312 |
+
temp_anns.append(new_ann)
|
| 313 |
+
else:
|
| 314 |
+
temp_anns.append(ann)
|
| 315 |
+
|
| 316 |
+
if self.subset_cat_ids:
|
| 317 |
+
if temp_anns or self.keep_empty_images:
|
| 318 |
+
self.images.append(img)
|
| 319 |
+
for ann in temp_anns:
|
| 320 |
+
self.annotations.append(ann)
|
| 321 |
+
else:
|
| 322 |
+
pass # no image added
|
| 323 |
+
else:
|
| 324 |
+
self.images.append(img)
|
| 325 |
+
for ann in temp_anns:
|
| 326 |
+
self.annotations.append(ann)
|
| 327 |
+
|
| 328 |
+
def get_json(self) -> Dict[str, object]:
|
| 329 |
+
"""Returns the full json for this instance of coco json builder."""
|
| 330 |
+
root_json = {}
|
| 331 |
+
if self.new_categories:
|
| 332 |
+
root_json["categories"] = self.new_categories
|
| 333 |
+
else:
|
| 334 |
+
root_json["categories"] = self.categories
|
| 335 |
+
root_json["info"] = self.generate_info()
|
| 336 |
+
root_json["licenses"] = self.generate_licenses()
|
| 337 |
+
root_json["images"] = self.images
|
| 338 |
+
root_json["annotations"] = self.annotations
|
| 339 |
+
return root_json
|
| 340 |
+
|
| 341 |
+
def save(self) -> Path:
|
| 342 |
+
"""Saves the json to the dest_path/dest_name location."""
|
| 343 |
+
file_path = self.dest_path / self.dest_name
|
| 344 |
+
print(f"Writing output to: '{file_path}'")
|
| 345 |
+
root_json = self.get_json()
|
| 346 |
+
with open(file_path, "w") as coco_file:
|
| 347 |
+
coco_file.write(json.dumps(root_json))
|
| 348 |
+
return file_path
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
class COCOShrinker:
|
| 352 |
+
"""Shrinker takes an MS COCO formatted dataset and creates a tiny version of it."""
|
| 353 |
+
|
| 354 |
+
def __init__(self, dataset_path: Path, keep_empty_images=False) -> None:
|
| 355 |
+
assert dataset_path.exists(), f"dataset_path: '{dataset_path}' does not exist"
|
| 356 |
+
assert dataset_path.is_file(), f"dataset_path: '{dataset_path}' is not a file"
|
| 357 |
+
self.base_path: Path = dataset_path.parent
|
| 358 |
+
self.dataset_path: Path = dataset_path
|
| 359 |
+
self.keep_empty_images = keep_empty_images
|
| 360 |
+
|
| 361 |
+
def shrink(self, target_filename: str, size: int = 512) -> None:
|
| 362 |
+
"""
|
| 363 |
+
Create a toy sized version of dataset so we can use it just for testing if code
|
| 364 |
+
runs, not for real training.
|
| 365 |
+
|
| 366 |
+
Args:
|
| 367 |
+
name: filename to save the tiny dataset to.
|
| 368 |
+
size: number of items to put into the output. The first <size>
|
| 369 |
+
elements from the input dataset are placed into the output.
|
| 370 |
+
|
| 371 |
+
Returns: Nothing, but the output dataset is saved to disk in the same directory
|
| 372 |
+
where the input .json lives, with the same filename but with "_tiny" added
|
| 373 |
+
to the filename.
|
| 374 |
+
"""
|
| 375 |
+
# Create subset
|
| 376 |
+
assert target_filename, "'target_filename' argument must not be empty"
|
| 377 |
+
dest_path: Path = self.base_path / target_filename
|
| 378 |
+
print(f"Creating subset of {self.dataset_path}, of size: {size}, at: {dest_path}")
|
| 379 |
+
coco = COCO(self.dataset_path)
|
| 380 |
+
builder = CocoJsonBuilder(coco.dataset["categories"], dest_path.parent, dest_path.name)
|
| 381 |
+
subset_img_ids = coco.getImgIds()[:size]
|
| 382 |
+
for img_id in subset_img_ids:
|
| 383 |
+
anns = coco.imgToAnns[img_id]
|
| 384 |
+
if anns or self.keep_empty_images:
|
| 385 |
+
builder.add_image(coco.imgs[img_id], anns)
|
| 386 |
+
builder.save()
|
| 387 |
+
return dest_path
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class COCOSubset:
|
| 391 |
+
"""Subset takes an MS COCO formatted dataset and creates a subset according to COCO parent ids provided as a lsit."""
|
| 392 |
+
|
| 393 |
+
def __init__(self, dataset_path: Path, keep_empty_images=False) -> None:
|
| 394 |
+
assert dataset_path.exists(), f"dataset_path: '{dataset_path}' does not exist"
|
| 395 |
+
assert dataset_path.is_file(), f"dataset_path: '{dataset_path}' is not a file"
|
| 396 |
+
self.base_path: Path = dataset_path.parent
|
| 397 |
+
self.dataset_path: Path = dataset_path
|
| 398 |
+
self.keep_empty_images = keep_empty_images
|
| 399 |
+
|
| 400 |
+
def shrink(self, target_filename: str, subset_par_ids=[], subset_cat_ids=[], size=512) -> None:
|
| 401 |
+
"""
|
| 402 |
+
Create a toy sized version of dataset so we can use it just for testing if code
|
| 403 |
+
runs, not for real training.
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
name: filename to save the tiny dataset to.
|
| 407 |
+
size: number of items to put into the output. The first <size>
|
| 408 |
+
elements from the input dataset are placed into the output.
|
| 409 |
+
|
| 410 |
+
Returns: Nothing, but the output dataset is saved to disk in the same directory
|
| 411 |
+
where the input .json lives, with the same filename but with "_tiny" added
|
| 412 |
+
to the filename.
|
| 413 |
+
"""
|
| 414 |
+
# Create subset
|
| 415 |
+
assert target_filename, "'target_filename' argument must not be empty"
|
| 416 |
+
dest_path: Path = self.base_path / target_filename
|
| 417 |
+
print(f"Creating subset of {self.dataset_path}, of size: {size}, at: {dest_path}")
|
| 418 |
+
coco = COCO(self.dataset_path)
|
| 419 |
+
|
| 420 |
+
categories = coco.dataset["categories"]
|
| 421 |
+
|
| 422 |
+
builder = CocoJsonBuilder(
|
| 423 |
+
categories,
|
| 424 |
+
subset_cat_ids,
|
| 425 |
+
dest_path.parent,
|
| 426 |
+
dest_path.name,
|
| 427 |
+
self.keep_empty_images,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
# subset_img_ids = coco.getImgIds()[:size]
|
| 431 |
+
|
| 432 |
+
# create index to map from parent id to list of image ids
|
| 433 |
+
parent_id_to_img_ids = {}
|
| 434 |
+
imgs = coco.dataset["images"]
|
| 435 |
+
parent_ids = set()
|
| 436 |
+
for img in imgs:
|
| 437 |
+
parent_ids.add(img["parent_id"])
|
| 438 |
+
for pid in parent_ids:
|
| 439 |
+
parent_id_to_img_ids[pid] = []
|
| 440 |
+
for img in imgs:
|
| 441 |
+
parent_id_to_img_ids[img["parent_id"]].append(img["id"])
|
| 442 |
+
|
| 443 |
+
if not subset_par_ids:
|
| 444 |
+
subset_par_ids = parent_ids
|
| 445 |
+
|
| 446 |
+
for par_id in subset_par_ids:
|
| 447 |
+
for img_id in parent_id_to_img_ids[par_id]:
|
| 448 |
+
anns = coco.imgToAnns[img_id]
|
| 449 |
+
if anns or self.keep_empty_images:
|
| 450 |
+
builder.add_image(coco.imgs[img_id], anns)
|
| 451 |
+
builder.save()
|
| 452 |
+
return dest_path
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
class COCORedundant:
|
| 456 |
+
"""Creates a version of xview that creates perfect redundancy by replacing vxiew images with a single empty image (no labels)."""
|
| 457 |
+
|
| 458 |
+
def __init__(self, dataset_path: Path) -> None:
|
| 459 |
+
assert dataset_path.exists(), f"dataset_path: '{dataset_path}' does not exist"
|
| 460 |
+
assert dataset_path.is_file(), f"dataset_path: '{dataset_path}' is not a file"
|
| 461 |
+
self.base_path: Path = dataset_path.parent
|
| 462 |
+
self.dataset_path: Path = dataset_path
|
| 463 |
+
|
| 464 |
+
def redundify(
|
| 465 |
+
self, target_filename: str, redundant_img_fn: str, percent_redundant: float
|
| 466 |
+
) -> None:
|
| 467 |
+
"""
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
target_filename: filename to save the new dataset to.
|
| 471 |
+
redundant_img_fn: name of the image file that will be used to make redundant copies
|
| 472 |
+
percent_redundant: Percentage of images to make redundant
|
| 473 |
+
|
| 474 |
+
Returns: Nothing
|
| 475 |
+
"""
|
| 476 |
+
assert target_filename, "'target_filename' argument must not be empty"
|
| 477 |
+
dest_path: Path = self.base_path / target_filename
|
| 478 |
+
print(f"Creating subset of {self.dataset_path} at: {dest_path}")
|
| 479 |
+
coco = COCO(self.dataset_path)
|
| 480 |
+
builder = CocoJsonBuilder(coco.dataset["categories"], dest_path.parent, dest_path.name)
|
| 481 |
+
|
| 482 |
+
# get all image ids
|
| 483 |
+
all_chip_ids = coco.getImgIds()
|
| 484 |
+
|
| 485 |
+
num_samples = int(percent_redundant * len(all_chip_ids))
|
| 486 |
+
|
| 487 |
+
sampled_chip_ids = random.sample(all_chip_ids, num_samples)
|
| 488 |
+
|
| 489 |
+
empty_anns = []
|
| 490 |
+
|
| 491 |
+
# make each sampled chip redundant; add to builder
|
| 492 |
+
for chipid in sampled_chip_ids:
|
| 493 |
+
cocoimg = coco.imgs[chipid]
|
| 494 |
+
cocoimg["file_path"] = redundant_img_fn
|
| 495 |
+
builder.add_image(cocoimg, empty_anns)
|
| 496 |
+
|
| 497 |
+
# add the rest of the chips to the builder
|
| 498 |
+
rest_of_chip_ids = list(set(all_chip_ids) - set(sampled_chip_ids))
|
| 499 |
+
for chipid in rest_of_chip_ids:
|
| 500 |
+
builder.add_image(coco.imgs[chipid], coco.imgToAnns[chipid])
|
| 501 |
+
|
| 502 |
+
builder.save()
|
| 503 |
+
|
| 504 |
+
print(
|
| 505 |
+
f"Total chips in new dataset: {len(builder.images)} (should match the original size of {len(all_chip_ids)})"
|
| 506 |
+
)
|
| 507 |
+
return dest_path
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
class COCOVideoFrames:
|
| 511 |
+
"""Creates a version of xview that mimics sequential video frame redundancy by making perfectly redundant copies of image chips."""
|
| 512 |
+
|
| 513 |
+
def __init__(self, dataset_path: Path) -> None:
|
| 514 |
+
assert dataset_path.exists(), f"dataset_path: '{dataset_path}' does not exist"
|
| 515 |
+
assert dataset_path.is_file(), f"dataset_path: '{dataset_path}' is not a file"
|
| 516 |
+
self.base_path: Path = dataset_path.parent
|
| 517 |
+
self.dataset_path: Path = dataset_path
|
| 518 |
+
|
| 519 |
+
def vidify(
|
| 520 |
+
self, target_filename: str, num_chips: int, num_copies: int, debug: bool = False
|
| 521 |
+
) -> None:
|
| 522 |
+
"""
|
| 523 |
+
|
| 524 |
+
Args:
|
| 525 |
+
name: filename to save the tiny dataset to.
|
| 526 |
+
size: number of items to put into the output. The first <size>
|
| 527 |
+
elements from the input dataset are placed into the output.
|
| 528 |
+
|
| 529 |
+
Returns: Nothing
|
| 530 |
+
"""
|
| 531 |
+
# Create subset
|
| 532 |
+
assert target_filename, "'target_filename' argument must not be empty"
|
| 533 |
+
dest_path: Path = self.base_path / target_filename
|
| 534 |
+
print(f"Creating subset of {self.dataset_path} at: {dest_path}")
|
| 535 |
+
coco = COCO(self.dataset_path)
|
| 536 |
+
builder = CocoJsonBuilder(coco.dataset["categories"], dest_path.parent, dest_path.name)
|
| 537 |
+
|
| 538 |
+
# subset_img_ids = coco.getImgIds()[:size]
|
| 539 |
+
|
| 540 |
+
# create index to map from parent id to list of image ids
|
| 541 |
+
parent_id_to_chipids = {}
|
| 542 |
+
imgs = coco.dataset["images"]
|
| 543 |
+
parent_ids = set()
|
| 544 |
+
for img in imgs:
|
| 545 |
+
parent_ids.add(img["parent_id"])
|
| 546 |
+
|
| 547 |
+
for pid in parent_ids:
|
| 548 |
+
parent_id_to_chipids[pid] = []
|
| 549 |
+
for img in imgs:
|
| 550 |
+
parent_id_to_chipids[img["parent_id"]].append(img["id"])
|
| 551 |
+
|
| 552 |
+
# initialize counters
|
| 553 |
+
chip_counter = 0
|
| 554 |
+
ann_counter = 0
|
| 555 |
+
num_chips = 4
|
| 556 |
+
num_copies = 10
|
| 557 |
+
|
| 558 |
+
# DEBUG COUNTERS
|
| 559 |
+
pid_ = 2
|
| 560 |
+
chipid_ = 2
|
| 561 |
+
i_ = 2
|
| 562 |
+
|
| 563 |
+
# DEBUG RANGES
|
| 564 |
+
# pids_ = list(range(2))
|
| 565 |
+
# chipids_ = list(range(2))
|
| 566 |
+
# is_ = list(range(2))
|
| 567 |
+
|
| 568 |
+
# for each parents id
|
| 569 |
+
for pid in parent_ids:
|
| 570 |
+
this_par_chipids = parent_id_to_chipids[pid]
|
| 571 |
+
|
| 572 |
+
# randomly sample num_chips chips
|
| 573 |
+
random_chipids = random.sample(this_par_chipids, num_chips)
|
| 574 |
+
|
| 575 |
+
# for each chip
|
| 576 |
+
for chipid in random_chipids:
|
| 577 |
+
img = coco.imgs[chipid]
|
| 578 |
+
|
| 579 |
+
# DEBUG
|
| 580 |
+
if debug:
|
| 581 |
+
if pid in list(parent_ids)[:pid_] and chipid in random_chipids[:chipid_]:
|
| 582 |
+
print("Original coco image...")
|
| 583 |
+
print(img)
|
| 584 |
+
print("")
|
| 585 |
+
|
| 586 |
+
# for num_copies
|
| 587 |
+
for i in range(num_copies):
|
| 588 |
+
new_cocoim = deepcopy(img)
|
| 589 |
+
new_cocoim["id"] = chip_counter
|
| 590 |
+
|
| 591 |
+
# DEBUG
|
| 592 |
+
if debug:
|
| 593 |
+
if (
|
| 594 |
+
pid in list(parent_ids)[:pid_] and chipid in random_chipids[:chipid_]
|
| 595 |
+
) and i in list(range(i_)):
|
| 596 |
+
print("New coco image...")
|
| 597 |
+
print(new_cocoim)
|
| 598 |
+
print("")
|
| 599 |
+
|
| 600 |
+
anns = coco.imgToAnns[chipid]
|
| 601 |
+
|
| 602 |
+
# DEBUG
|
| 603 |
+
if debug and anns:
|
| 604 |
+
if (
|
| 605 |
+
pid in list(parent_ids)[:pid_] and chipid in random_chipids[:chipid_]
|
| 606 |
+
) and i in list(range(i_)):
|
| 607 |
+
print("Original annotation (first)...")
|
| 608 |
+
print(anns[0])
|
| 609 |
+
print("")
|
| 610 |
+
|
| 611 |
+
new_anns = []
|
| 612 |
+
for ann in anns:
|
| 613 |
+
new_ann = deepcopy(ann)
|
| 614 |
+
new_ann["image_id"] = chip_counter
|
| 615 |
+
new_ann["id"] = ann_counter
|
| 616 |
+
new_anns.append(new_ann)
|
| 617 |
+
ann_counter += 1
|
| 618 |
+
|
| 619 |
+
builder.add_image(new_cocoim, new_anns)
|
| 620 |
+
|
| 621 |
+
# DEBUG
|
| 622 |
+
if debug and new_anns:
|
| 623 |
+
if (
|
| 624 |
+
pid in list(parent_ids)[:pid_] and chipid in random_chipids[:chipid_]
|
| 625 |
+
) and i in list(range(i_)):
|
| 626 |
+
print("New annotations...")
|
| 627 |
+
for ann in new_anns[:3]:
|
| 628 |
+
print(ann)
|
| 629 |
+
print("")
|
| 630 |
+
|
| 631 |
+
chip_counter += 1
|
| 632 |
+
|
| 633 |
+
builder.save()
|
| 634 |
+
|
| 635 |
+
print(f"total chips created: {len(builder.images)}")
|
| 636 |
+
return dest_path
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
class COCOBoxNoise:
|
| 640 |
+
"""Creates a version of xview that induces synthetic noise on the spatial accuracy of the bounding boxes."""
|
| 641 |
+
|
| 642 |
+
def __init__(self, dataset_path: Path) -> None:
|
| 643 |
+
assert dataset_path.exists(), f"dataset_path: '{dataset_path}' does not exist"
|
| 644 |
+
assert dataset_path.is_file(), f"dataset_path: '{dataset_path}' is not a file"
|
| 645 |
+
self.base_path: Path = dataset_path.parent
|
| 646 |
+
self.dataset_path: Path = dataset_path
|
| 647 |
+
|
| 648 |
+
def apply_box_shift(self, ann: dict, shift_vec: tuple) -> None:
|
| 649 |
+
"""
|
| 650 |
+
Args:
|
| 651 |
+
ann: A single coco annotation
|
| 652 |
+
shift_vec: An (x,y) tuple where each coord controls the distance
|
| 653 |
+
to shift the box in each dimension in terms of a factor of box width/height
|
| 654 |
+
e.g. (1,0) causes a horizontal shift of '1' box width to the right and zero vertical shift
|
| 655 |
+
|
| 656 |
+
Returns: Nothing
|
| 657 |
+
"""
|
| 658 |
+
x, y, w, h = ann["bbox"][0], ann["bbox"][1], ann["bbox"][2], ann["bbox"][3]
|
| 659 |
+
x_min = x
|
| 660 |
+
x_max = x + w
|
| 661 |
+
y_min = y
|
| 662 |
+
y_max = y + h
|
| 663 |
+
|
| 664 |
+
# Calc shift
|
| 665 |
+
x_shift = int(shift_vec[0] * w)
|
| 666 |
+
y_shift = int(shift_vec[1] * h)
|
| 667 |
+
|
| 668 |
+
# Apply shift
|
| 669 |
+
ann["bbox"] = [x + x_shift, y + y_shift, w, h]
|
| 670 |
+
ann["segmentation"] = [[x_min, y_min, x_min, y_max, x_max, y_max, x_max, y_min]]
|
| 671 |
+
|
| 672 |
+
def random_shift(self, shift_coeff: float) -> tuple:
|
| 673 |
+
"""
|
| 674 |
+
Args:
|
| 675 |
+
shift_coeff: A float the controls the magnitude of the synthetic box shift
|
| 676 |
+
|
| 677 |
+
Returns: A tuple that desribes the shift in each of the x and y directions
|
| 678 |
+
"""
|
| 679 |
+
|
| 680 |
+
shift_x = shift_coeff * random.uniform(-1, 1)
|
| 681 |
+
shift_y = shift_coeff * random.uniform(-1, 1)
|
| 682 |
+
|
| 683 |
+
return (shift_x, shift_y)
|
| 684 |
+
|
| 685 |
+
def adjust_if_out_of_bounds(self, ann: dict, img: dict) -> None:
|
| 686 |
+
"""
|
| 687 |
+
Handles the case when a bounding box annotation breaches the image boundaries
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
ann: A single coco annotation
|
| 691 |
+
img: The coco image corresponding to the annotation
|
| 692 |
+
|
| 693 |
+
Returns: Nothing
|
| 694 |
+
"""
|
| 695 |
+
|
| 696 |
+
im_w, im_h = img["width"], img["height"]
|
| 697 |
+
|
| 698 |
+
x, y, w, h = ann["bbox"][0], ann["bbox"][1], ann["bbox"][2], ann["bbox"][3]
|
| 699 |
+
x_min = x
|
| 700 |
+
x_max = x + w
|
| 701 |
+
y_min = y
|
| 702 |
+
y_max = y + h
|
| 703 |
+
|
| 704 |
+
# check case where:
|
| 705 |
+
|
| 706 |
+
# box completely out of bounds
|
| 707 |
+
if (x_min >= im_w or x_max <= 0) or (y_min >= im_h or y_max <= 0):
|
| 708 |
+
ann = {}
|
| 709 |
+
return
|
| 710 |
+
|
| 711 |
+
# box breaks left boundary
|
| 712 |
+
if x_min < 0:
|
| 713 |
+
x, x_min = 0, 0
|
| 714 |
+
|
| 715 |
+
# box breaks top boundary
|
| 716 |
+
if y_min < 0:
|
| 717 |
+
y, y_min = 0, 0
|
| 718 |
+
|
| 719 |
+
# box breaks right boundary
|
| 720 |
+
if x_max > im_w:
|
| 721 |
+
x_max = im_w
|
| 722 |
+
w = x_max - x_min
|
| 723 |
+
|
| 724 |
+
# box breaks bottom boundary
|
| 725 |
+
if y_max > im_h:
|
| 726 |
+
y_max = im_h
|
| 727 |
+
h = y_max - y_min
|
| 728 |
+
|
| 729 |
+
ann["bbox"] = [x, y, w, h]
|
| 730 |
+
ann["segmentation"] = [[x_min, y_min, x_min, y_max, x_max, y_max, x_max, y_min]]
|
| 731 |
+
|
| 732 |
+
return
|
| 733 |
+
|
| 734 |
+
def box_noisify(
|
| 735 |
+
self,
|
| 736 |
+
target_filename: str,
|
| 737 |
+
box_noise_coeff: float,
|
| 738 |
+
chip_ratio: float,
|
| 739 |
+
debug: bool = False,
|
| 740 |
+
) -> None:
|
| 741 |
+
"""
|
| 742 |
+
|
| 743 |
+
Args:
|
| 744 |
+
name: filename to save the tiny dataset to.
|
| 745 |
+
noise_coeff: Value that controls magnitude of box shift (can be greater than 1, or less than 0).
|
| 746 |
+
chip_ratio: the ratio of chips within each parent image that receive noise (btw 0 and 1)
|
| 747 |
+
debug: Setting to 'True' activates helpful print statements
|
| 748 |
+
|
| 749 |
+
Returns: Nothing
|
| 750 |
+
"""
|
| 751 |
+
# Create subset
|
| 752 |
+
assert target_filename, "'target_filename' argument must not be empty"
|
| 753 |
+
dest_path: Path = self.base_path / target_filename
|
| 754 |
+
print(f"Creating subset of {self.dataset_path} at: {dest_path}")
|
| 755 |
+
coco = COCO(self.dataset_path)
|
| 756 |
+
builder = CocoJsonBuilder(coco.dataset["categories"], dest_path.parent, dest_path.name)
|
| 757 |
+
|
| 758 |
+
# create index to map from parent id to list of image ids
|
| 759 |
+
parent_id_to_chipids = {}
|
| 760 |
+
imgs = coco.dataset["images"]
|
| 761 |
+
parent_ids = set()
|
| 762 |
+
for img in imgs:
|
| 763 |
+
parent_ids.add(img["parent_id"])
|
| 764 |
+
for pid in parent_ids:
|
| 765 |
+
parent_id_to_chipids[pid] = []
|
| 766 |
+
for img in imgs:
|
| 767 |
+
parent_id_to_chipids[img["parent_id"]].append(img["id"])
|
| 768 |
+
|
| 769 |
+
# DEBUG COUNTERS
|
| 770 |
+
pid_ = 2
|
| 771 |
+
chipid_ = 2
|
| 772 |
+
i_ = 2
|
| 773 |
+
|
| 774 |
+
# for each parents id
|
| 775 |
+
for pid in parent_ids:
|
| 776 |
+
this_par_chipids = parent_id_to_chipids[pid]
|
| 777 |
+
|
| 778 |
+
num_chips = int(chip_ratio * len(this_par_chipids))
|
| 779 |
+
|
| 780 |
+
# randomly sample num_chips chips
|
| 781 |
+
noisy_chipids = random.sample(this_par_chipids, num_chips)
|
| 782 |
+
|
| 783 |
+
other_chipids = list(set(this_par_chipids) - set(noisy_chipids))
|
| 784 |
+
|
| 785 |
+
# for each chip
|
| 786 |
+
for chipid in noisy_chipids:
|
| 787 |
+
img = coco.imgs[chipid]
|
| 788 |
+
|
| 789 |
+
# DEBUG
|
| 790 |
+
if debug:
|
| 791 |
+
if pid in list(parent_ids)[:pid_] and chipid in noisy_chipids[:chipid_]:
|
| 792 |
+
print("Original coco image...")
|
| 793 |
+
print(img)
|
| 794 |
+
print("")
|
| 795 |
+
|
| 796 |
+
anns = coco.imgToAnns[chipid]
|
| 797 |
+
|
| 798 |
+
# DEBUG
|
| 799 |
+
if debug and anns:
|
| 800 |
+
if pid in list(parent_ids)[:pid_] and chipid in noisy_chipids[:chipid_]:
|
| 801 |
+
print("Original annotation (first)...")
|
| 802 |
+
print(anns[0])
|
| 803 |
+
print("")
|
| 804 |
+
|
| 805 |
+
new_anns = []
|
| 806 |
+
for ann in anns:
|
| 807 |
+
new_ann = deepcopy(ann)
|
| 808 |
+
|
| 809 |
+
# shift box label
|
| 810 |
+
xy_shift = self.random_shift(box_noise_coeff)
|
| 811 |
+
self.apply_box_shift(new_ann, xy_shift)
|
| 812 |
+
self.adjust_if_out_of_bounds(new_ann, img)
|
| 813 |
+
|
| 814 |
+
new_anns.append(new_ann)
|
| 815 |
+
|
| 816 |
+
if debug and new_anns:
|
| 817 |
+
if pid in list(parent_ids)[:pid_] and chipid in noisy_chipids[:chipid_]:
|
| 818 |
+
if ann["id"] == anns[0]["id"]:
|
| 819 |
+
print("XY shift for anns[0]...")
|
| 820 |
+
print(xy_shift)
|
| 821 |
+
print("")
|
| 822 |
+
|
| 823 |
+
builder.add_image(img, new_anns)
|
| 824 |
+
|
| 825 |
+
# DEBUG
|
| 826 |
+
if debug and new_anns:
|
| 827 |
+
if pid in list(parent_ids)[:pid_] and chipid in noisy_chipids[:chipid_]:
|
| 828 |
+
print("New annotations...")
|
| 829 |
+
for ann in new_anns[:3]:
|
| 830 |
+
print(ann)
|
| 831 |
+
print("")
|
| 832 |
+
|
| 833 |
+
for chipid in other_chipids:
|
| 834 |
+
builder.add_image(coco.imgs[chipid], coco.imgToAnns[chipid])
|
| 835 |
+
|
| 836 |
+
builder.save()
|
| 837 |
+
|
| 838 |
+
print(f"total chips created: {len(builder.images)}")
|
| 839 |
+
return dest_path
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
class COCONoisyCleanMerge:
|
| 843 |
+
"""Subset takes an MS COCO formatted dataset and creates a subset according to COCO parent ids provided as a lsit."""
|
| 844 |
+
|
| 845 |
+
def __init__(
|
| 846 |
+
self, noisy_dataset_path: Path, clean_dataset_path: Path, indexes_path: Path
|
| 847 |
+
) -> None:
|
| 848 |
+
assert (
|
| 849 |
+
noisy_dataset_path.exists()
|
| 850 |
+
), f"noisy_dataset_path: '{noisy_dataset_path}' does not exist"
|
| 851 |
+
assert (
|
| 852 |
+
noisy_dataset_path.is_file()
|
| 853 |
+
), f"noisy_dataset_path: '{noisy_dataset_path}' is not a file"
|
| 854 |
+
self.noisy_base_path: Path = noisy_dataset_path.parent
|
| 855 |
+
self.noisy_dataset_path: Path = noisy_dataset_path
|
| 856 |
+
|
| 857 |
+
assert (
|
| 858 |
+
clean_dataset_path.exists()
|
| 859 |
+
), f"clean_dataset_path: '{clean_dataset_path}' does not exist"
|
| 860 |
+
assert (
|
| 861 |
+
clean_dataset_path.is_file()
|
| 862 |
+
), f"clean_dataset_path: '{clean_dataset_path}' is not a file"
|
| 863 |
+
self.clean_base_path: Path = clean_dataset_path.parent
|
| 864 |
+
self.clean_dataset_path: Path = clean_dataset_path
|
| 865 |
+
|
| 866 |
+
assert indexes_path.exists(), f"indexes_path: '{indexes_path}' does not exist"
|
| 867 |
+
assert indexes_path.is_file(), f"indexes_path: '{indexes_path}' is not a file"
|
| 868 |
+
self.indexes_base_path: Path = indexes_path.parent
|
| 869 |
+
self.indexes_path: Path = indexes_path
|
| 870 |
+
|
| 871 |
+
def load_indexes_from_json(self, index_json_path: Path):
|
| 872 |
+
with open(index_json_path) as f:
|
| 873 |
+
loaded_data = json.load(f)
|
| 874 |
+
print(f"LOADING {len(loaded_data['current_indexes'])} indexes from: {index_json_path}.")
|
| 875 |
+
current_indexes, unlabelled_indexes = (
|
| 876 |
+
loaded_data["current_indexes"],
|
| 877 |
+
loaded_data["unlabelled_indexes"],
|
| 878 |
+
)
|
| 879 |
+
return current_indexes, unlabelled_indexes
|
| 880 |
+
|
| 881 |
+
# def get_sampled_batch_indices(split_a: float, split_b: float, al_algo) -> typing.Set[int]:
|
| 882 |
+
# """
|
| 883 |
+
# Given two splits (a, and b), returns the indices that were sampled to move
|
| 884 |
+
# from split a to split b. Second return value is the labelled set
|
| 885 |
+
# as of the start of split b.
|
| 886 |
+
# """
|
| 887 |
+
# labelled_a, unlabelled_a = utils.load_indexes(args, split_a, al_algo)
|
| 888 |
+
# labelled_b, unlabelled_b = utils.load_indexes(args, split_b, al_algo)
|
| 889 |
+
# return set(labelled_b) - set(labelled_a), set(labelled_b)
|
| 890 |
+
|
| 891 |
+
def merge_noisy_clean(self, target_filename: str) -> None:
|
| 892 |
+
"""
|
| 893 |
+
Create a toy sized version of dataset so we can use it just for testing if code
|
| 894 |
+
runs, not for real training.
|
| 895 |
+
|
| 896 |
+
Args:
|
| 897 |
+
name: filename to save the tiny dataset to.
|
| 898 |
+
size: number of items to put into the output. The first <size>
|
| 899 |
+
elements from the input dataset are placed into the output.
|
| 900 |
+
|
| 901 |
+
Returns: Nothing, but the output dataset is saved to disk in the same directory
|
| 902 |
+
where the input .json lives, with the same filename but with "_tiny" added
|
| 903 |
+
to the filename.
|
| 904 |
+
"""
|
| 905 |
+
# Create subset
|
| 906 |
+
assert target_filename, "'target_filename' argument must not be empty"
|
| 907 |
+
dest_path: Path = self.clean_base_path / target_filename
|
| 908 |
+
print(f"Creating subset of {self.clean_dataset_path} at: {dest_path}")
|
| 909 |
+
coco_noisy = COCO(self.noisy_dataset_path)
|
| 910 |
+
coco_clean = COCO(self.clean_dataset_path)
|
| 911 |
+
builder = CocoJsonBuilder(
|
| 912 |
+
coco_noisy.dataset["categories"], dest_path.parent, dest_path.name
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
# subset_img_ids = coco.getImgIds()[:size]
|
| 916 |
+
|
| 917 |
+
# get the initial noisy indexes
|
| 918 |
+
|
| 919 |
+
init_indexes, _ = self.load_indexes_from_json(self.indexes_path)
|
| 920 |
+
|
| 921 |
+
clean_imgs = coco_clean.dataset["images"]
|
| 922 |
+
|
| 923 |
+
for img in clean_imgs:
|
| 924 |
+
anns = coco_clean.imgToAnns[img["id"]]
|
| 925 |
+
if img["id"] in set(init_indexes):
|
| 926 |
+
# img = coco_noisy.imgs[img["id"]]
|
| 927 |
+
anns = coco_noisy.imgToAnns[img["id"]]
|
| 928 |
+
builder.add_image(img, anns)
|
| 929 |
+
builder.save()
|
| 930 |
+
|
| 931 |
+
return dest_path
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
class CocoClassDistHelper(COCO):
|
| 935 |
+
"""
|
| 936 |
+
A subclass of pycococtools.coco that adds a method(s) to calculate class
|
| 937 |
+
distribution.
|
| 938 |
+
"""
|
| 939 |
+
|
| 940 |
+
def __init__(
|
| 941 |
+
self,
|
| 942 |
+
annotation_file: str = None,
|
| 943 |
+
create_mapping: bool = False,
|
| 944 |
+
mapping_csv: str = None,
|
| 945 |
+
write_to_JSON: bool = None,
|
| 946 |
+
dict_pass: bool = False,
|
| 947 |
+
):
|
| 948 |
+
# super().__init__(annotation_file, create_mapping, mapping_csv, write_to_JSON, dict_pass)
|
| 949 |
+
super().__init__(annotation_file)
|
| 950 |
+
# list of dictionaries. 3 keys each: (supercategory, id, name):
|
| 951 |
+
self.cats = self.loadCats(self.getCatIds())
|
| 952 |
+
list.sort(self.cats, key=lambda c: c["id"])
|
| 953 |
+
# Dictionaries to lookup category and supercategory names from category
|
| 954 |
+
# id:
|
| 955 |
+
self.cat_name_lookup = {c["id"]: c["name"] for c in self.cats}
|
| 956 |
+
self.supercat_name_lookup = {
|
| 957 |
+
c["id"]: c["supercategory"] if "supercategory" in c else "None" for c in self.cats
|
| 958 |
+
}
|
| 959 |
+
# List of integers, image id's:
|
| 960 |
+
self.img_ids = self.getImgIds()
|
| 961 |
+
# List of strings, each is an annotation id:
|
| 962 |
+
self.ann_ids = self.getAnnIds(imgIds=self.img_ids)
|
| 963 |
+
self.anns_list = self.loadAnns(self.ann_ids)
|
| 964 |
+
print(f"num images: {len(self.img_ids)}")
|
| 965 |
+
# print(F"num annotation id's: {len(self.ann_ids)}")
|
| 966 |
+
print(f"num annotations: {len(self.anns)}")
|
| 967 |
+
# print(F"First annotation: {self.anns[0]}")
|
| 968 |
+
# Create self.img_ann_counts, a dictionary keyed off of img_id. For
|
| 969 |
+
# each img_id it stores a collections.Counter object, that has a count
|
| 970 |
+
# of how many annotations for each category/class there are for that
|
| 971 |
+
# img_id
|
| 972 |
+
self.img_ann_counts = {}
|
| 973 |
+
for img_id in self.imgToAnns.keys():
|
| 974 |
+
imgAnnCounter = Counter({cat["name"]: 0 for cat in self.cats})
|
| 975 |
+
anns = self.imgToAnns[img_id]
|
| 976 |
+
for ann in anns:
|
| 977 |
+
imgAnnCounter[self.cat_name_lookup[ann["category_id"]]] += 1
|
| 978 |
+
self.img_ann_counts[img_id] = imgAnnCounter
|
| 979 |
+
self.num_cats = len(self.cats)
|
| 980 |
+
self.cat_img_counts: Dict[int, int] = {
|
| 981 |
+
c["id"]: float(len(np.unique(self.catToImgs[c["id"]]))) for c in self.cats
|
| 982 |
+
}
|
| 983 |
+
self.cat_ann_counts: Dict[int, int] = defaultdict(int)
|
| 984 |
+
for cat_id in self.cat_name_lookup.keys():
|
| 985 |
+
self.cat_ann_counts[cat_id] = 0
|
| 986 |
+
for ann in self.anns.values():
|
| 987 |
+
self.cat_ann_counts[ann["category_id"]] += 1
|
| 988 |
+
self.cat_img_counts = OrderedDict(sorted(self.cat_img_counts.items()))
|
| 989 |
+
self.cat_ann_counts = OrderedDict(sorted(self.cat_ann_counts.items()))
|
| 990 |
+
|
| 991 |
+
def get_class_dist(self, img_ids: List[int] = None):
|
| 992 |
+
"""
|
| 993 |
+
Args:
|
| 994 |
+
img_ids: List of image id's. If None, distribution is calculated for
|
| 995 |
+
all image id's in the dataset.
|
| 996 |
+
|
| 997 |
+
Returns: A dictionary representing the class distribution. Keys are category
|
| 998 |
+
names Values are counts (e.g., how many annotations are there with that
|
| 999 |
+
category/class label) np.array of class percentages. Entries are sorted by
|
| 1000 |
+
category_id (same as self.cats)
|
| 1001 |
+
"""
|
| 1002 |
+
cat_counter = Counter({cat["name"]: 0 for cat in self.cats})
|
| 1003 |
+
if img_ids is None:
|
| 1004 |
+
img_ids = self.imgToAnns.keys()
|
| 1005 |
+
|
| 1006 |
+
for img_id in img_ids:
|
| 1007 |
+
if img_id not in self.imgToAnns:
|
| 1008 |
+
continue
|
| 1009 |
+
cat_counter += self.img_ann_counts[img_id]
|
| 1010 |
+
# Stupid hack to fix issue where Counter drops zero counts when we did Counter + Counter above
|
| 1011 |
+
for cat in self.cats:
|
| 1012 |
+
if cat["name"] not in cat_counter:
|
| 1013 |
+
cat_counter[cat["name"]] = 0
|
| 1014 |
+
|
| 1015 |
+
cat_counter = {k: v for k, v in sorted(cat_counter.items(), key=lambda item: item[0])}
|
| 1016 |
+
|
| 1017 |
+
# Convert to np array where entries correspond to cat_id's sorted asc.:
|
| 1018 |
+
total = float(sum(cat_counter.values()))
|
| 1019 |
+
cat_names = [c["name"] for c in self.cats]
|
| 1020 |
+
cat_percents = np.zeros((self.num_cats))
|
| 1021 |
+
for idx, cat_name in enumerate(sorted(cat_names)):
|
| 1022 |
+
cat_percents[idx] = cat_counter[cat_name] / total
|
| 1023 |
+
assert len(cat_counter) == len(cat_percents), f"{len(cat_counter)} == {len(cat_percents)}"
|
| 1024 |
+
|
| 1025 |
+
return cat_counter, cat_percents
|
| 1026 |
+
|
| 1027 |
+
def get_class_img_counts(self) -> dict[int, Any]:
|
| 1028 |
+
"""
|
| 1029 |
+
Returns dictionary whose keys are class_id's and values are number of images with one or
|
| 1030 |
+
more instances of that class
|
| 1031 |
+
"""
|
| 1032 |
+
return self.cat_img_counts
|
| 1033 |
+
|
| 1034 |
+
def get_class_ann_counts(self):
|
| 1035 |
+
"""
|
| 1036 |
+
Returns dictionary whose keys are class_id's and values are number of annotations available
|
| 1037 |
+
for that class
|
| 1038 |
+
"""
|
| 1039 |
+
return self.cat_ann_counts
|
| 1040 |
+
|
| 1041 |
+
|
| 1042 |
+
def split(data: List, test_size: float = 0.2, random_state=None) -> Tuple[List[Any], List[Any]]:
|
| 1043 |
+
"""
|
| 1044 |
+
Similar to scikit learn, creates train/test splits of the passed in data.
|
| 1045 |
+
|
| 1046 |
+
Args:
|
| 1047 |
+
data: A list or iterable type, of data to split.
|
| 1048 |
+
test_size: value in [0, 1.0] indicating the size of the test split.
|
| 1049 |
+
random_state: an int or RandomState object to seed the numpy randomness.
|
| 1050 |
+
|
| 1051 |
+
Returns: 2-tuple of lists; (train, test), where each item in data has been placed
|
| 1052 |
+
into either the train or test split.
|
| 1053 |
+
"""
|
| 1054 |
+
n = len(data)
|
| 1055 |
+
num_test = int(np.ceil(test_size * n))
|
| 1056 |
+
# print(F"n:{n}, num_test:{num_test}")
|
| 1057 |
+
np.random.seed(random_state)
|
| 1058 |
+
test_idx = set(np.random.choice(range(n), num_test))
|
| 1059 |
+
data_test, data_train = list(), list()
|
| 1060 |
+
for idx, datum in enumerate(data):
|
| 1061 |
+
if idx in test_idx:
|
| 1062 |
+
data_test.append(data[idx])
|
| 1063 |
+
else:
|
| 1064 |
+
data_train.append(data[idx])
|
| 1065 |
+
return data_train, data_test
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
def split2(
|
| 1069 |
+
source_map: Dict,
|
| 1070 |
+
sources: List,
|
| 1071 |
+
test_size: float = 0.2,
|
| 1072 |
+
random_state=None,
|
| 1073 |
+
sample_rate: float = 0.05,
|
| 1074 |
+
) -> Tuple[List[Any], List[Any]]:
|
| 1075 |
+
"""
|
| 1076 |
+
Similar to scikit learn, creates train/test splits of the passed in data.
|
| 1077 |
+
Assumes that splits need to be senstive to input source (name prefix). Checks by first
|
| 1078 |
+
mapping and splitting data sources with seed. Then samples randomly within each
|
| 1079 |
+
source with the seed.
|
| 1080 |
+
|
| 1081 |
+
Args:
|
| 1082 |
+
source_map: A dictionary of source prefixes mapped to a list of sorted (for deterministic splits) image file names.
|
| 1083 |
+
source: A sorted list of source prefixes (for deterministic splits)
|
| 1084 |
+
test_size: value in [0, 1.0] indicating the size of the test split.
|
| 1085 |
+
random_state: an int or RandomState object to seed the numpy randomness.
|
| 1086 |
+
sample_rate: float in [0,1.0] dictating
|
| 1087 |
+
|
| 1088 |
+
Returns: 2-tuple of lists; (train, test), where each item in data has been placed
|
| 1089 |
+
into either the train or test split.
|
| 1090 |
+
"""
|
| 1091 |
+
|
| 1092 |
+
num_sources = len(sources)
|
| 1093 |
+
num_test = int(np.ceil(test_size * num_sources))
|
| 1094 |
+
|
| 1095 |
+
np.random.seed(random_state)
|
| 1096 |
+
test_source_idxs = set(np.random.choice(range(num_sources), num_test))
|
| 1097 |
+
|
| 1098 |
+
def sample_from_source(images):
|
| 1099 |
+
num_images = len(images)
|
| 1100 |
+
num_sample = int(np.ceil(sample_rate * num_images))
|
| 1101 |
+
np.random.seed(random_state)
|
| 1102 |
+
sample_image_idx = set(np.random.choice(range(num_images), num_sample))
|
| 1103 |
+
data_test = list()
|
| 1104 |
+
for idx, image in enumerate(images):
|
| 1105 |
+
if idx in sample_image_idx:
|
| 1106 |
+
data_test.append(images[idx])
|
| 1107 |
+
return data_test
|
| 1108 |
+
|
| 1109 |
+
data_test, data_train = list(), list()
|
| 1110 |
+
for idx, datum in enumerate(sources):
|
| 1111 |
+
if idx in test_source_idxs:
|
| 1112 |
+
data_test += sample_from_source(source_map[sources[idx]])
|
| 1113 |
+
else:
|
| 1114 |
+
data_train += sample_from_source(source_map[sources[idx]])
|
| 1115 |
+
|
| 1116 |
+
return data_train, data_test
|
| 1117 |
+
|
| 1118 |
+
|
| 1119 |
+
@dataclass
|
| 1120 |
+
class bbox:
|
| 1121 |
+
"""
|
| 1122 |
+
Data class to store a bounding box annotation instance
|
| 1123 |
+
"""
|
| 1124 |
+
|
| 1125 |
+
img_id: int
|
| 1126 |
+
cat_id: int
|
| 1127 |
+
x_center: float
|
| 1128 |
+
y_center: float
|
| 1129 |
+
width: float
|
| 1130 |
+
height: float
|
| 1131 |
+
|
| 1132 |
+
|
| 1133 |
+
class Img:
|
| 1134 |
+
"""A helper class to store image info and annotations."""
|
| 1135 |
+
|
| 1136 |
+
anns: List[bbox]
|
| 1137 |
+
|
| 1138 |
+
def __init__(self, id: int, filename: str, width: float, height: float) -> None:
|
| 1139 |
+
self.id: int = id
|
| 1140 |
+
self.filename: str = filename
|
| 1141 |
+
self.width: float = width
|
| 1142 |
+
self.height: float = height
|
| 1143 |
+
self.anns = []
|
| 1144 |
+
|
| 1145 |
+
def add_ann(self, ann: bbox) -> None:
|
| 1146 |
+
"""Add an annotation to the image"""
|
| 1147 |
+
self.anns.append(ann)
|
| 1148 |
+
|
| 1149 |
+
def get_anns(self) -> List[bbox]:
|
| 1150 |
+
"""
|
| 1151 |
+
Gets annotations, possibly filters them in prep for converting to yolo/Darknet
|
| 1152 |
+
format.
|
| 1153 |
+
"""
|
| 1154 |
+
return self.anns
|
| 1155 |
+
|
| 1156 |
+
def to_darknet(self, box: bbox) -> bbox:
|
| 1157 |
+
"""Convert a BBox from coco to Darknet format"""
|
| 1158 |
+
# COCO bboxes define the topleft corner of the box, but yolo expects the x/y
|
| 1159 |
+
# coords to reference the center of the box. yolo also requires the coordinates
|
| 1160 |
+
# and widths to be scaled by image dims, down to the range [0.0, 1.0]
|
| 1161 |
+
return bbox(
|
| 1162 |
+
self.id,
|
| 1163 |
+
box.cat_id,
|
| 1164 |
+
(box.x_center + (box.width / 2.0)) / self.width,
|
| 1165 |
+
(box.y_center + (box.height / 2.0)) / self.height,
|
| 1166 |
+
box.width / self.width,
|
| 1167 |
+
box.height / self.height,
|
| 1168 |
+
)
|
| 1169 |
+
|
| 1170 |
+
def write_darknet_anns(self, label_file) -> None:
|
| 1171 |
+
"""Writes bounding boxes to specified file in yolo/Darknet format"""
|
| 1172 |
+
# It's a bit leaky abstraction to have Img handle writing to file but it's
|
| 1173 |
+
# convenient b/c we have access to img height and width here to scale the bbox
|
| 1174 |
+
# dims. Same goes for .to_darknet()
|
| 1175 |
+
anns = self.get_anns()
|
| 1176 |
+
for box in anns:
|
| 1177 |
+
box = self.to_darknet(box)
|
| 1178 |
+
label_file.write(
|
| 1179 |
+
f"{box.cat_id} {box.x_center} {box.y_center} {box.width} {box.height}\n"
|
| 1180 |
+
)
|
| 1181 |
+
|
| 1182 |
+
def has_anns(self) -> bool:
|
| 1183 |
+
"""
|
| 1184 |
+
Returns true if this image instance has at least one bounding box (after any
|
| 1185 |
+
filters are applied)
|
| 1186 |
+
"""
|
| 1187 |
+
# TODO: Can add filter to only return true if annotations have non-zero area: I
|
| 1188 |
+
# saw around ~5 or 6 annotations in the v2_train_chipped.json that had zero
|
| 1189 |
+
# area, not sure if those might cause problems for yolo
|
| 1190 |
+
return self.anns
|
| 1191 |
+
|
| 1192 |
+
def get_label_path(self, base_path: Path) -> str:
|
| 1193 |
+
return base_path / self.filename.replace("jpeg", "txt").replace("jpg", "txt")
|
| 1194 |
+
|
| 1195 |
+
def get_img_path(self, base_path: Path, dataset_name: str, data_split: str) -> str:
|
| 1196 |
+
return base_path / dataset_name.replace("_tiny", "") / "images" / data_split / self.filename
|
| 1197 |
+
|
| 1198 |
+
|
| 1199 |
+
class CocoToDarknet:
|
| 1200 |
+
"""Class that helps convert an MS COCO formatted dataset to yolo/Darknet format"""
|
| 1201 |
+
|
| 1202 |
+
@staticmethod
|
| 1203 |
+
def convert(ann_path: Path, base_path: Path, dataset_name: str, data_split: str) -> None:
|
| 1204 |
+
"""Convert specified dataset to Darknet format.
|
| 1205 |
+
|
| 1206 |
+
Details:
|
| 1207 |
+
- Labels are written to base_path/<dataset_name>/labels/<data_split>/*.txt
|
| 1208 |
+
- A file containing list of category names, is written to
|
| 1209 |
+
<base_path>/<dataset_name>.names
|
| 1210 |
+
"""
|
| 1211 |
+
coco = COCO(ann_path)
|
| 1212 |
+
images = CocoToDarknet.build_db(coco)
|
| 1213 |
+
# Make paths:
|
| 1214 |
+
labels_path = base_path / dataset_name / "labels" / data_split
|
| 1215 |
+
labels_path.mkdir(parents=True, exist_ok=True)
|
| 1216 |
+
names_path = base_path / f"{dataset_name}.names"
|
| 1217 |
+
image_paths = CocoToDarknet.generate_label_files(
|
| 1218 |
+
images, labels_path, base_path, dataset_name, data_split
|
| 1219 |
+
)
|
| 1220 |
+
CocoToDarknet.generate_image_list(base_path, dataset_name, image_paths, data_split)
|
| 1221 |
+
CocoToDarknet.generate_names(names_path, coco)
|
| 1222 |
+
|
| 1223 |
+
@staticmethod
|
| 1224 |
+
def generate_names(names_path: Path, coco: COCO) -> None:
|
| 1225 |
+
categories = [c["name"] + "\n" for c in coco.dataset["categories"]]
|
| 1226 |
+
with open(names_path, "w") as names_file:
|
| 1227 |
+
names_file.writelines(categories)
|
| 1228 |
+
|
| 1229 |
+
@staticmethod
|
| 1230 |
+
def generate_label_files(
|
| 1231 |
+
images: Dict[int, Img],
|
| 1232 |
+
labels_path: Path,
|
| 1233 |
+
base_path: Path,
|
| 1234 |
+
dataset_name: str,
|
| 1235 |
+
data_split: str,
|
| 1236 |
+
) -> List[str]:
|
| 1237 |
+
"""
|
| 1238 |
+
Generates one .txt file for each image in the coco-formatted dataset. The .txt
|
| 1239 |
+
files contain the annotations in yolo/Darknet format.
|
| 1240 |
+
"""
|
| 1241 |
+
# Convert:
|
| 1242 |
+
img_paths = set()
|
| 1243 |
+
for img_id, img in images.items():
|
| 1244 |
+
if img.has_anns():
|
| 1245 |
+
label_path = labels_path / img.get_label_path(labels_path)
|
| 1246 |
+
with open(label_path, "w") as label_file:
|
| 1247 |
+
img.write_darknet_anns(label_file)
|
| 1248 |
+
img_path = img.get_img_path(base_path, dataset_name, data_split)
|
| 1249 |
+
assert img_path.exists(), f"Image doesn't exist {img_path}"
|
| 1250 |
+
img_paths.add(str(img_path) + "\n")
|
| 1251 |
+
return list(img_paths)
|
| 1252 |
+
|
| 1253 |
+
@staticmethod
|
| 1254 |
+
def generate_image_list(
|
| 1255 |
+
base_path: Path, dataset_name: str, image_paths: List[str], data_split: str
|
| 1256 |
+
) -> None:
|
| 1257 |
+
"""Generates train.txt, val.txt, etc, txt file with list of image paths."""
|
| 1258 |
+
listing_path = base_path / dataset_name / f"{data_split}.txt"
|
| 1259 |
+
print("Listing path: ", listing_path)
|
| 1260 |
+
with open(listing_path, "w") as listing_file:
|
| 1261 |
+
listing_file.writelines(image_paths)
|
| 1262 |
+
|
| 1263 |
+
@staticmethod
|
| 1264 |
+
def build_db(coco: COCO) -> Dict[int, Img]:
|
| 1265 |
+
"""
|
| 1266 |
+
Builds a datastructure of images. All annotations are grouped into their
|
| 1267 |
+
corresponding images to facilitate generating the Darknet formatted metadata.
|
| 1268 |
+
|
| 1269 |
+
Args:
|
| 1270 |
+
coco: a pycocotools.coco COCO instance
|
| 1271 |
+
|
| 1272 |
+
Returns: Dictionary whose keys are image id's, and values are Img instances that
|
| 1273 |
+
are loaded with all the image info and annotations from the coco-formatted
|
| 1274 |
+
json
|
| 1275 |
+
"""
|
| 1276 |
+
anns = coco.dataset["annotations"]
|
| 1277 |
+
images: Dict[int, Img] = {}
|
| 1278 |
+
# Build images data structure:
|
| 1279 |
+
for i, ann in enumerate(anns):
|
| 1280 |
+
ann = CocoToDarknet.get_ann(ann)
|
| 1281 |
+
if ann.img_id not in images:
|
| 1282 |
+
coco_img = coco.dataset["images"][ann.img_id]
|
| 1283 |
+
images[ann.img_id] = Img(
|
| 1284 |
+
ann.img_id,
|
| 1285 |
+
coco_img["file_name"],
|
| 1286 |
+
float(coco_img["width"]),
|
| 1287 |
+
float(coco_img["height"]),
|
| 1288 |
+
)
|
| 1289 |
+
img = images[ann.img_id]
|
| 1290 |
+
img.add_ann(ann)
|
| 1291 |
+
return images
|
| 1292 |
+
|
| 1293 |
+
@staticmethod
|
| 1294 |
+
def get_ann(ann):
|
| 1295 |
+
"""
|
| 1296 |
+
Gets a bbox instance from an annotation element pulled from the coco-formatted
|
| 1297 |
+
json
|
| 1298 |
+
"""
|
| 1299 |
+
box = ann["bbox"]
|
| 1300 |
+
return bbox(ann["image_id"], ann["category_id"], box[0], box[1], box[2], box[3])
|
| 1301 |
+
|
| 1302 |
+
|
| 1303 |
+
class CocoToComsat:
|
| 1304 |
+
"""Class that helps convert an MS COCO formatted dataset to the COMSAT format"""
|
| 1305 |
+
|
| 1306 |
+
@staticmethod
|
| 1307 |
+
def convert(src_images: Path, src_instances: Path, dst_base: Path) -> None:
|
| 1308 |
+
"""
|
| 1309 |
+
Convert source coco dataset to Comsat format.
|
| 1310 |
+
"""
|
| 1311 |
+
coco = COCO(src_instances)
|
| 1312 |
+
|
| 1313 |
+
# for each image
|
| 1314 |
+
for image in coco.dataset["images"]:
|
| 1315 |
+
# create nested sub directories for this image
|
| 1316 |
+
CocoToComsat.init_nested_dirs(dst_base, image)
|
| 1317 |
+
|
| 1318 |
+
# add image to the "imagery" subfolder
|
| 1319 |
+
CocoToComsat.add_image(src_images, dst_base, image)
|
| 1320 |
+
|
| 1321 |
+
# create "labels" json and add to subfolder
|
| 1322 |
+
CocoToComsat.add_labels(dst_base, image, coco)
|
| 1323 |
+
|
| 1324 |
+
# create "metadata" json and add to subfolder
|
| 1325 |
+
CocoToComsat.add_metadata(dst_base, image)
|
| 1326 |
+
|
| 1327 |
+
@staticmethod
|
| 1328 |
+
def init_nested_dirs(dst_base: Path, image):
|
| 1329 |
+
"""
|
| 1330 |
+
Initializes a new set of nested folders.
|
| 1331 |
+
"""
|
| 1332 |
+
# Create paths
|
| 1333 |
+
image_id = Path(str(image["id"]))
|
| 1334 |
+
imagery_path = dst_base / image_id / "imagery"
|
| 1335 |
+
labels_path = dst_base / image_id / "labels"
|
| 1336 |
+
metadata_path = dst_base / image_id / "metadata"
|
| 1337 |
+
|
| 1338 |
+
# Make dirs
|
| 1339 |
+
imagery_path.mkdir(parents=True, exist_ok=True)
|
| 1340 |
+
labels_path.mkdir(parents=True, exist_ok=True)
|
| 1341 |
+
metadata_path.mkdir(parents=True, exist_ok=True)
|
| 1342 |
+
|
| 1343 |
+
@staticmethod
|
| 1344 |
+
def add_image(src_images: Path, dst_base: Path, image):
|
| 1345 |
+
"""
|
| 1346 |
+
.
|
| 1347 |
+
"""
|
| 1348 |
+
image_id = Path(str(image["id"]))
|
| 1349 |
+
image_file = Path(image["file_name"])
|
| 1350 |
+
source_path = src_images / image_file
|
| 1351 |
+
imagery_path = dst_base / image_id / "imagery"
|
| 1352 |
+
|
| 1353 |
+
copy(source_path, imagery_path)
|
| 1354 |
+
|
| 1355 |
+
@staticmethod
|
| 1356 |
+
def add_labels(dst_base: Path, image, coco):
|
| 1357 |
+
"""
|
| 1358 |
+
.
|
| 1359 |
+
"""
|
| 1360 |
+
comsat_labels = []
|
| 1361 |
+
|
| 1362 |
+
default_comsat_label = {
|
| 1363 |
+
"type": "Feature",
|
| 1364 |
+
"geometry": {
|
| 1365 |
+
"type": "Polygon",
|
| 1366 |
+
"coordinates": [
|
| 1367 |
+
[
|
| 1368 |
+
[39.542, 46.534],
|
| 1369 |
+
[39.542, 46.534],
|
| 1370 |
+
[39.542, 46.534],
|
| 1371 |
+
[39.542, 46.534],
|
| 1372 |
+
]
|
| 1373 |
+
],
|
| 1374 |
+
},
|
| 1375 |
+
"properties": {
|
| 1376 |
+
"label": {
|
| 1377 |
+
"name": "Category 1",
|
| 1378 |
+
"ontology_iri": "http://ontology.jhuapl.edu/",
|
| 1379 |
+
},
|
| 1380 |
+
"pixel_coordinates": [[367, 520], [367, 520], [367, 520], [367, 520]],
|
| 1381 |
+
"label_acquisition_date": None,
|
| 1382 |
+
"image_acquisition_date": None,
|
| 1383 |
+
"peer_reviewed": False,
|
| 1384 |
+
},
|
| 1385 |
+
}
|
| 1386 |
+
|
| 1387 |
+
# Get annotations for this image
|
| 1388 |
+
coco_anns = coco.imgToAnns[image["id"]]
|
| 1389 |
+
|
| 1390 |
+
for ann in coco_anns:
|
| 1391 |
+
new_comsat_label = deepcopy(default_comsat_label)
|
| 1392 |
+
comsat_poly_coords = CocoToComsat.coco_to_comsat_poly_coords(ann, image)
|
| 1393 |
+
comsat_pixel_coords = CocoToComsat.coco_to_comsat_pixel_coords(ann)
|
| 1394 |
+
comsat_label_name = CocoToComsat.get_category_name(ann, coco)
|
| 1395 |
+
|
| 1396 |
+
new_comsat_label["geometry"]["coordinates"] = comsat_poly_coords
|
| 1397 |
+
new_comsat_label["properties"]["pixel_coordinates"] = comsat_pixel_coords
|
| 1398 |
+
new_comsat_label["properties"]["label"]["name"] = comsat_label_name
|
| 1399 |
+
|
| 1400 |
+
comsat_labels.append(new_comsat_label)
|
| 1401 |
+
|
| 1402 |
+
root_json = {"type": "FeatureCollection", "features": comsat_labels}
|
| 1403 |
+
|
| 1404 |
+
image_id = str(image["id"])
|
| 1405 |
+
labels_file_name = Path(f"LABELS_{image_id}.json")
|
| 1406 |
+
|
| 1407 |
+
# labels_base = dst_base / image_id / "labels"
|
| 1408 |
+
|
| 1409 |
+
labels_file_path = dst_base / image_id / "labels" / labels_file_name
|
| 1410 |
+
|
| 1411 |
+
# save labels to json
|
| 1412 |
+
with open(labels_file_path, "w") as labels_file:
|
| 1413 |
+
labels_file.write(json.dumps(root_json))
|
| 1414 |
+
|
| 1415 |
+
@staticmethod
|
| 1416 |
+
def coco_to_comsat_pixel_coords(ann):
|
| 1417 |
+
"""
|
| 1418 |
+
Reformats coco segmentation to comsat in terms of pixel coordinates
|
| 1419 |
+
|
| 1420 |
+
- coco poly format is [ [x1, y1, x2, y2, ... ] ]
|
| 1421 |
+
- comsat poly format is [ [ [x1, y1], [x2, y2], ... ] ]
|
| 1422 |
+
"""
|
| 1423 |
+
coco_pixel_coords = ann["segmentation"]
|
| 1424 |
+
|
| 1425 |
+
comsat_pixel_coords = []
|
| 1426 |
+
|
| 1427 |
+
for group in coco_pixel_coords:
|
| 1428 |
+
# split the coco pixel coords by even/odd elements and zip
|
| 1429 |
+
comsat_pixel_coords.append([[int(x), int(y)] for x, y in zip(group[::2], group[1::2])])
|
| 1430 |
+
|
| 1431 |
+
return comsat_pixel_coords
|
| 1432 |
+
|
| 1433 |
+
@staticmethod
|
| 1434 |
+
def coco_to_comsat_poly_coords(ann, image):
|
| 1435 |
+
"""
|
| 1436 |
+
Reformats coco segmentation to comsat in terms of image dim percentage coordinates
|
| 1437 |
+
|
| 1438 |
+
- coco poly format is [ [x1, y1, x2, y2, ... ] ]
|
| 1439 |
+
- comsat poly format is [ [ [x1, y1], [x2, y2], ... ] ]
|
| 1440 |
+
"""
|
| 1441 |
+
|
| 1442 |
+
w = float(image["width"])
|
| 1443 |
+
h = float(image["height"])
|
| 1444 |
+
|
| 1445 |
+
comsat_pixel_coords = CocoToComsat.coco_to_comsat_pixel_coords(ann)
|
| 1446 |
+
|
| 1447 |
+
comsat_poly_coords = []
|
| 1448 |
+
|
| 1449 |
+
for group in comsat_pixel_coords:
|
| 1450 |
+
# divide pixel coords by image dims
|
| 1451 |
+
comsat_poly_coords.append([[x[0] / w, x[1] / h] for x in group])
|
| 1452 |
+
|
| 1453 |
+
return comsat_poly_coords
|
| 1454 |
+
|
| 1455 |
+
@staticmethod
|
| 1456 |
+
def get_category_name(ann, coco):
|
| 1457 |
+
"""
|
| 1458 |
+
Returns the category name for the annotation given
|
| 1459 |
+
"""
|
| 1460 |
+
|
| 1461 |
+
cats = coco.loadCats(coco.getCatIds())
|
| 1462 |
+
|
| 1463 |
+
list.sort(cats, key=lambda c: c["id"])
|
| 1464 |
+
|
| 1465 |
+
# Dictionary to lookup category name from category id:
|
| 1466 |
+
cat_name_lookup = {c["id"]: c["name"] for c in cats}
|
| 1467 |
+
|
| 1468 |
+
return cat_name_lookup[ann["category_id"]]
|
| 1469 |
+
|
| 1470 |
+
@staticmethod
|
| 1471 |
+
def add_metadata(dst_base: Path, image):
|
| 1472 |
+
"""
|
| 1473 |
+
.
|
| 1474 |
+
"""
|
| 1475 |
+
root_json = {
|
| 1476 |
+
"image_id": image["id"],
|
| 1477 |
+
"image_width": image["width"],
|
| 1478 |
+
"image_height": image["height"],
|
| 1479 |
+
"image_source": "XVIEW",
|
| 1480 |
+
}
|
| 1481 |
+
|
| 1482 |
+
image_id = str(image["id"])
|
| 1483 |
+
metadata_file_name = f"METADATA_{image_id}.json"
|
| 1484 |
+
|
| 1485 |
+
metadata_file_path = dst_base / image_id / "metadata" / metadata_file_name
|
| 1486 |
+
|
| 1487 |
+
# save labels to json
|
| 1488 |
+
with open(metadata_file_path, "w") as metadata_file:
|
| 1489 |
+
metadata_file.write(json.dumps(root_json))
|
| 1490 |
+
|
| 1491 |
+
@staticmethod
|
| 1492 |
+
def generate_names(names_path: Path, coco: COCO) -> None:
|
| 1493 |
+
categories = [c["name"] + "\n" for c in coco.dataset["categories"]]
|
| 1494 |
+
with open(names_path, "w") as names_file:
|
| 1495 |
+
names_file.writelines(categories)
|
| 1496 |
+
|
| 1497 |
+
@staticmethod
|
| 1498 |
+
def generate_label_files(
|
| 1499 |
+
images: Dict[int, Img],
|
| 1500 |
+
labels_path: Path,
|
| 1501 |
+
base_path: Path,
|
| 1502 |
+
dataset_name: str,
|
| 1503 |
+
data_split: str,
|
| 1504 |
+
) -> List[str]:
|
| 1505 |
+
"""
|
| 1506 |
+
Generates one .txt file for each image in the coco-formatted dataset. The .txt
|
| 1507 |
+
files contain the annotations in yolo/Darknet format.
|
| 1508 |
+
"""
|
| 1509 |
+
# Convert:
|
| 1510 |
+
img_paths = set()
|
| 1511 |
+
for img_id, img in images.items():
|
| 1512 |
+
if img.has_anns():
|
| 1513 |
+
label_path = labels_path / img.get_label_path(labels_path)
|
| 1514 |
+
with open(label_path, "w") as label_file:
|
| 1515 |
+
img.write_darknet_anns(label_file)
|
| 1516 |
+
img_path = img.get_img_path(base_path, dataset_name, data_split)
|
| 1517 |
+
assert img_path.exists(), f"Image doesn't exist {img_path}"
|
| 1518 |
+
img_paths.add(str(img_path) + "\n")
|
| 1519 |
+
return list(img_paths)
|
| 1520 |
+
|
| 1521 |
+
@staticmethod
|
| 1522 |
+
def generate_image_list(
|
| 1523 |
+
base_path: Path, dataset_name: str, image_paths: List[str], data_split: str
|
| 1524 |
+
) -> None:
|
| 1525 |
+
"""Generates train.txt, val.txt, etc, txt file with list of image paths."""
|
| 1526 |
+
listing_path = base_path / dataset_name / f"{data_split}.txt"
|
| 1527 |
+
print("Listing path: ", listing_path)
|
| 1528 |
+
with open(listing_path, "w") as listing_file:
|
| 1529 |
+
listing_file.writelines(image_paths)
|
| 1530 |
+
|
| 1531 |
+
@staticmethod
|
| 1532 |
+
def build_db(coco: COCO) -> Dict[int, Img]:
|
| 1533 |
+
"""
|
| 1534 |
+
Builds a datastructure of images. All annotations are grouped into their
|
| 1535 |
+
corresponding images to facilitate generating the Darknet formatted metadata.
|
| 1536 |
+
|
| 1537 |
+
Args:
|
| 1538 |
+
coco: a pycocotools.coco COCO instance
|
| 1539 |
+
|
| 1540 |
+
Returns: Dictionary whose keys are image id's, and values are Img instances that
|
| 1541 |
+
are loaded with all the image info and annotations from the coco-formatted
|
| 1542 |
+
json
|
| 1543 |
+
"""
|
| 1544 |
+
anns = coco.dataset["annotations"]
|
| 1545 |
+
images: Dict[int, Img] = {}
|
| 1546 |
+
# Build images data structure:
|
| 1547 |
+
for i, ann in enumerate(anns):
|
| 1548 |
+
ann = CocoToDarknet.get_ann(ann)
|
| 1549 |
+
if ann.img_id not in images:
|
| 1550 |
+
coco_img = coco.dataset["images"][ann.img_id]
|
| 1551 |
+
images[ann.img_id] = Img(
|
| 1552 |
+
ann.img_id,
|
| 1553 |
+
coco_img["file_name"],
|
| 1554 |
+
float(coco_img["width"]),
|
| 1555 |
+
float(coco_img["height"]),
|
| 1556 |
+
)
|
| 1557 |
+
img = images[ann.img_id]
|
| 1558 |
+
img.add_ann(ann)
|
| 1559 |
+
return images
|
| 1560 |
+
|
| 1561 |
+
@staticmethod
|
| 1562 |
+
def get_ann(ann):
|
| 1563 |
+
"""
|
| 1564 |
+
Gets a bbox instance from an annotation element pulled from the coco-formatted
|
| 1565 |
+
json
|
| 1566 |
+
"""
|
| 1567 |
+
box = ann["bbox"]
|
| 1568 |
+
return bbox(ann["image_id"], ann["category_id"], box[0], box[1], box[2], box[3])
|
src/xview/category_id_mapping.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"11": "0",
|
| 3 |
+
"12": "1",
|
| 4 |
+
"13": "2",
|
| 5 |
+
"15": "3",
|
| 6 |
+
"17": "4",
|
| 7 |
+
"18": "5",
|
| 8 |
+
"19": "6",
|
| 9 |
+
"20": "7",
|
| 10 |
+
"21": "8",
|
| 11 |
+
"23": "9",
|
| 12 |
+
"24": "10",
|
| 13 |
+
"25": "11",
|
| 14 |
+
"26": "12",
|
| 15 |
+
"27": "13",
|
| 16 |
+
"28": "14",
|
| 17 |
+
"29": "15",
|
| 18 |
+
"32": "16",
|
| 19 |
+
"33": "17",
|
| 20 |
+
"34": "18",
|
| 21 |
+
"35": "19",
|
| 22 |
+
"36": "20",
|
| 23 |
+
"37": "21",
|
| 24 |
+
"38": "22",
|
| 25 |
+
"40": "23",
|
| 26 |
+
"41": "24",
|
| 27 |
+
"42": "25",
|
| 28 |
+
"44": "26",
|
| 29 |
+
"45": "27",
|
| 30 |
+
"47": "28",
|
| 31 |
+
"49": "29",
|
| 32 |
+
"50": "30",
|
| 33 |
+
"51": "31",
|
| 34 |
+
"52": "32",
|
| 35 |
+
"53": "33",
|
| 36 |
+
"54": "34",
|
| 37 |
+
"55": "35",
|
| 38 |
+
"56": "36",
|
| 39 |
+
"57": "37",
|
| 40 |
+
"59": "38",
|
| 41 |
+
"60": "39",
|
| 42 |
+
"61": "40",
|
| 43 |
+
"62": "41",
|
| 44 |
+
"63": "42",
|
| 45 |
+
"64": "43",
|
| 46 |
+
"65": "44",
|
| 47 |
+
"66": "45",
|
| 48 |
+
"71": "46",
|
| 49 |
+
"72": "47",
|
| 50 |
+
"73": "48",
|
| 51 |
+
"74": "49",
|
| 52 |
+
"76": "50",
|
| 53 |
+
"77": "51",
|
| 54 |
+
"79": "52",
|
| 55 |
+
"83": "53",
|
| 56 |
+
"84": "54",
|
| 57 |
+
"86": "55",
|
| 58 |
+
"89": "56",
|
| 59 |
+
"91": "57",
|
| 60 |
+
"93": "58",
|
| 61 |
+
"94": "59"
|
| 62 |
+
}
|
src/xview/slice_xview.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fire
|
| 2 |
+
from sahi.scripts.slice_coco import slice
|
| 3 |
+
|
| 4 |
+
MAX_WORKERS = 20
|
| 5 |
+
IGNORE_NEGATIVE_SAMPLES = False
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def slice_xview(
|
| 9 |
+
image_dir: str, dataset_json_path: str, output_dir: str, slice_size: int, overlap_ratio: float
|
| 10 |
+
):
|
| 11 |
+
slice(
|
| 12 |
+
image_dir=image_dir,
|
| 13 |
+
dataset_json_path=dataset_json_path,
|
| 14 |
+
output_dir=output_dir,
|
| 15 |
+
slice_size=slice_size,
|
| 16 |
+
overlap_ratio=overlap_ratio,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if __name__ == "__main__":
|
| 21 |
+
fire.Fire(slice_xview)
|
src/xview/xview_class_labels.txt
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
11:Fixed-wing Aircraft
|
| 2 |
+
12:Small Aircraft
|
| 3 |
+
13:Cargo Plane
|
| 4 |
+
15:Helicopter
|
| 5 |
+
17:Passenger Vehicle
|
| 6 |
+
18:Small Car
|
| 7 |
+
19:Bus
|
| 8 |
+
20:Pickup Truck
|
| 9 |
+
21:Utility Truck
|
| 10 |
+
23:Truck
|
| 11 |
+
24:Cargo Truck
|
| 12 |
+
25:Truck w/Box
|
| 13 |
+
26:Truck Tractor
|
| 14 |
+
27:Trailer
|
| 15 |
+
28:Truck w/Flatbed
|
| 16 |
+
29:Truck w/Liquid
|
| 17 |
+
32:Crane Truck
|
| 18 |
+
33:Railway Vehicle
|
| 19 |
+
34:Passenger Car
|
| 20 |
+
35:Cargo Car
|
| 21 |
+
36:Flat Car
|
| 22 |
+
37:Tank car
|
| 23 |
+
38:Locomotive
|
| 24 |
+
40:Maritime Vessel
|
| 25 |
+
41:Motorboat
|
| 26 |
+
42:Sailboat
|
| 27 |
+
44:Tugboat
|
| 28 |
+
45:Barge
|
| 29 |
+
47:Fishing Vessel
|
| 30 |
+
49:Ferry
|
| 31 |
+
50:Yacht
|
| 32 |
+
51:Container Ship
|
| 33 |
+
52:Oil Tanker
|
| 34 |
+
53:Engineering Vehicle
|
| 35 |
+
54:Tower crane
|
| 36 |
+
55:Container Crane
|
| 37 |
+
56:Reach Stacker
|
| 38 |
+
57:Straddle Carrier
|
| 39 |
+
59:Mobile Crane
|
| 40 |
+
60:Dump Truck
|
| 41 |
+
61:Haul Truck
|
| 42 |
+
62:Scraper/Tractor
|
| 43 |
+
63:Front loader/Bulldozer
|
| 44 |
+
64:Excavator
|
| 45 |
+
65:Cement Mixer
|
| 46 |
+
66:Ground Grader
|
| 47 |
+
71:Hut/Tent
|
| 48 |
+
72:Shed
|
| 49 |
+
73:Building
|
| 50 |
+
74:Aircraft Hangar
|
| 51 |
+
76:Damaged Building
|
| 52 |
+
77:Facility
|
| 53 |
+
79:Construction Site
|
| 54 |
+
83:Vehicle Lot
|
| 55 |
+
84:Helipad
|
| 56 |
+
86:Storage Tank
|
| 57 |
+
89:Shipping container lot
|
| 58 |
+
91:Shipping Container
|
| 59 |
+
93:Pylon
|
| 60 |
+
94:Tower
|
src/xview/xview_to_coco.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Dict, List
|
| 5 |
+
|
| 6 |
+
import fire
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from sahi.utils.coco import Coco, CocoAnnotation, CocoCategory, CocoImage
|
| 10 |
+
from sahi.utils.file import load_json, save_json
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
# fix the seed
|
| 14 |
+
random.seed(13)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def xview_to_coco(
|
| 18 |
+
train_images_dir,
|
| 19 |
+
train_geojson_path,
|
| 20 |
+
output_dir,
|
| 21 |
+
train_split_rate=0.75,
|
| 22 |
+
category_id_remapping=None,
|
| 23 |
+
):
|
| 24 |
+
"""
|
| 25 |
+
Converts visdrone-det annotations into coco annotation.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
train_images_dir: str
|
| 29 |
+
'train_images' folder directory
|
| 30 |
+
train_geojson_path: str
|
| 31 |
+
'xView_train.geojson' file path
|
| 32 |
+
output_dir: str
|
| 33 |
+
Output folder directory
|
| 34 |
+
train_split_rate: bool
|
| 35 |
+
Train split ratio
|
| 36 |
+
category_id_remapping: dict
|
| 37 |
+
Used for selecting desired category ids and mapping them.
|
| 38 |
+
If not provided, xView mapping will be used.
|
| 39 |
+
format: str(id) to str(id)
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
# init vars
|
| 43 |
+
category_id_to_name = {}
|
| 44 |
+
with open("src/xview/xview_class_labels.txt", encoding="utf8") as f:
|
| 45 |
+
lines = f.readlines()
|
| 46 |
+
for line in lines:
|
| 47 |
+
category_id = line.split(":")[0]
|
| 48 |
+
category_name = line.split(":")[1].replace("\n", "")
|
| 49 |
+
category_id_to_name[category_id] = category_name
|
| 50 |
+
|
| 51 |
+
if category_id_remapping is None:
|
| 52 |
+
category_id_remapping = load_json("src/xview/category_id_mapping.json")
|
| 53 |
+
category_id_remapping
|
| 54 |
+
|
| 55 |
+
# init coco object
|
| 56 |
+
coco = Coco()
|
| 57 |
+
# append categories
|
| 58 |
+
for category_id, category_name in category_id_to_name.items():
|
| 59 |
+
if category_id in category_id_remapping.keys():
|
| 60 |
+
remapped_category_id = category_id_remapping[category_id]
|
| 61 |
+
coco.add_category(
|
| 62 |
+
CocoCategory(id=int(remapped_category_id), name=category_name)
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# parse xview data
|
| 66 |
+
coords, chips, classes, image_name_to_annotation_ind = get_labels(
|
| 67 |
+
train_geojson_path
|
| 68 |
+
)
|
| 69 |
+
image_name_list = get_ordered_image_name_list(image_name_to_annotation_ind)
|
| 70 |
+
|
| 71 |
+
# convert xView data to COCO format
|
| 72 |
+
for image_name in tqdm(image_name_list, "Converting xView data into COCO format"):
|
| 73 |
+
# create coco image object
|
| 74 |
+
width, height = Image.open(Path(train_images_dir) / image_name).size
|
| 75 |
+
coco_image = CocoImage(file_name=image_name, height=height, width=width)
|
| 76 |
+
|
| 77 |
+
annotation_ind_list = image_name_to_annotation_ind[image_name]
|
| 78 |
+
|
| 79 |
+
# iterate over image annotations
|
| 80 |
+
for annotation_ind in annotation_ind_list:
|
| 81 |
+
bbox = coords[annotation_ind].tolist()
|
| 82 |
+
category_id = str(int(classes[annotation_ind].item()))
|
| 83 |
+
coco_bbox = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]]
|
| 84 |
+
if category_id in category_id_remapping.keys():
|
| 85 |
+
category_name = category_id_to_name[category_id]
|
| 86 |
+
remapped_category_id = category_id_remapping[category_id]
|
| 87 |
+
else:
|
| 88 |
+
continue
|
| 89 |
+
# create coco annotation and append it to coco image
|
| 90 |
+
coco_annotation = CocoAnnotation(
|
| 91 |
+
bbox=coco_bbox,
|
| 92 |
+
category_id=int(remapped_category_id),
|
| 93 |
+
category_name=category_name,
|
| 94 |
+
)
|
| 95 |
+
if coco_annotation.area > 0:
|
| 96 |
+
coco_image.add_annotation(coco_annotation)
|
| 97 |
+
coco.add_image(coco_image)
|
| 98 |
+
|
| 99 |
+
result = coco.split_coco_as_train_val(train_split_rate=train_split_rate)
|
| 100 |
+
|
| 101 |
+
train_json_path = Path(output_dir) / "train.json"
|
| 102 |
+
val_json_path = Path(output_dir) / "val.json"
|
| 103 |
+
save_json(data=result["train_coco"].json, save_path=train_json_path)
|
| 104 |
+
save_json(data=result["val_coco"].json, save_path=val_json_path)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_ordered_image_name_list(image_name_to_annotation_ind: Dict):
|
| 108 |
+
image_name_list: List[str] = list(image_name_to_annotation_ind.keys())
|
| 109 |
+
|
| 110 |
+
def get_image_ind(image_name: str):
|
| 111 |
+
return int(image_name.split(".")[0])
|
| 112 |
+
|
| 113 |
+
image_name_list.sort(key=get_image_ind)
|
| 114 |
+
|
| 115 |
+
return image_name_list
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def get_labels(fname):
|
| 119 |
+
"""
|
| 120 |
+
Gets label data from a geojson label file
|
| 121 |
+
Args:
|
| 122 |
+
fname: file path to an xView geojson label file
|
| 123 |
+
Output:
|
| 124 |
+
Returns three arrays: coords, chips, and classes corresponding to the
|
| 125 |
+
coordinates, file-names, and classes for each ground truth.
|
| 126 |
+
Modified from https://github.com/DIUx-xView.
|
| 127 |
+
"""
|
| 128 |
+
data = load_json(fname)
|
| 129 |
+
|
| 130 |
+
coords = np.zeros((len(data["features"]), 4))
|
| 131 |
+
chips = np.zeros((len(data["features"])), dtype="object")
|
| 132 |
+
classes = np.zeros((len(data["features"])))
|
| 133 |
+
image_name_to_annotation_ind = defaultdict(list)
|
| 134 |
+
|
| 135 |
+
for i in tqdm(range(len(data["features"])), "Parsing xView data"):
|
| 136 |
+
if data["features"][i]["properties"]["bounds_imcoords"] != []:
|
| 137 |
+
b_id = data["features"][i]["properties"]["image_id"]
|
| 138 |
+
# https://github.com/DIUx-xView/xView1_baseline/issues/3
|
| 139 |
+
if b_id == "1395.tif":
|
| 140 |
+
continue
|
| 141 |
+
val = np.array(
|
| 142 |
+
[
|
| 143 |
+
int(num)
|
| 144 |
+
for num in data["features"][i]["properties"][
|
| 145 |
+
"bounds_imcoords"
|
| 146 |
+
].split(",")
|
| 147 |
+
]
|
| 148 |
+
)
|
| 149 |
+
chips[i] = b_id
|
| 150 |
+
classes[i] = data["features"][i]["properties"]["type_id"]
|
| 151 |
+
|
| 152 |
+
image_name_to_annotation_ind[b_id].append(i)
|
| 153 |
+
|
| 154 |
+
if val.shape[0] != 4:
|
| 155 |
+
print("Issues at %d!" % i)
|
| 156 |
+
else:
|
| 157 |
+
coords[i] = val
|
| 158 |
+
else:
|
| 159 |
+
chips[i] = "None"
|
| 160 |
+
|
| 161 |
+
return coords, chips, classes, image_name_to_annotation_ind
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
if __name__ == "__main__":
|
| 165 |
+
fire.Fire(xview_to_coco)
|