Update README.md
Browse files
README.md
CHANGED
|
@@ -1,73 +1,125 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
dtype: bool
|
| 26 |
-
- name: patient_age
|
| 27 |
-
dtype: float32
|
| 28 |
-
- name: patient_sex
|
| 29 |
-
dtype: string
|
| 30 |
-
- name: field_strength
|
| 31 |
-
dtype: string
|
| 32 |
-
- name: manufacturer
|
| 33 |
-
dtype: string
|
| 34 |
-
- name: scanner_model
|
| 35 |
-
dtype: string
|
| 36 |
-
- name: repetition_time
|
| 37 |
-
dtype: float32
|
| 38 |
-
- name: echo_time
|
| 39 |
-
dtype: float32
|
| 40 |
-
- name: flip_angle
|
| 41 |
-
dtype: float32
|
| 42 |
-
- name: primary_lesion_hemisphere
|
| 43 |
-
dtype: string
|
| 44 |
-
- name: primary_lesion_location
|
| 45 |
-
dtype: string
|
| 46 |
-
- name: secondary_lesion_hemisphere
|
| 47 |
-
dtype: string
|
| 48 |
-
- name: secondary_lesion_location
|
| 49 |
-
dtype: string
|
| 50 |
-
- name: bounding_boxes
|
| 51 |
-
dtype: string
|
| 52 |
-
- name: total_lesion_voxels
|
| 53 |
-
dtype: int32
|
| 54 |
-
- name: has_enhancing_tumor
|
| 55 |
-
dtype: bool
|
| 56 |
-
- name: has_flair_hyperintensity
|
| 57 |
-
dtype: bool
|
| 58 |
-
- name: has_necrotic_core
|
| 59 |
-
dtype: bool
|
| 60 |
-
- name: has_resection_cavity
|
| 61 |
-
dtype: bool
|
| 62 |
-
splits:
|
| 63 |
-
- name: train
|
| 64 |
-
num_bytes: 1681105729.399
|
| 65 |
-
num_examples: 134201
|
| 66 |
-
download_size: 1625827790
|
| 67 |
-
dataset_size: 1681105729.399
|
| 68 |
-
configs:
|
| 69 |
-
- config_name: default
|
| 70 |
-
data_files:
|
| 71 |
-
- split: train
|
| 72 |
-
path: data/train-*
|
| 73 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- medical
|
| 6 |
+
- brain
|
| 7 |
+
- mri
|
| 8 |
+
- neuroimaging
|
| 9 |
+
- pathology
|
| 10 |
+
- object-detection
|
| 11 |
+
- bounding-boxes
|
| 12 |
+
- vision-language
|
| 13 |
+
- multimodal
|
| 14 |
+
- fine-tuning
|
| 15 |
+
task_categories:
|
| 16 |
+
- object-detection
|
| 17 |
+
- image-to-text
|
| 18 |
+
- visual-question-answering
|
| 19 |
+
modality:
|
| 20 |
+
- image
|
| 21 |
+
- text
|
| 22 |
+
size_categories:
|
| 23 |
+
- 100K<n<1M
|
| 24 |
+
pretty_name: BrainBox
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
---
|
| 26 |
+
|
| 27 |
+
# BrainBox
|
| 28 |
+
|
| 29 |
+
A unified medical imaging dataset containing 134,201 brain MRI slices with bounding box annotations, designed for fine-tuning vision-language models (VLMs) on medical image localization tasks.
|
| 30 |
+
|
| 31 |
+
## Dataset Summary
|
| 32 |
+
|
| 33 |
+
BrainBox consolidates multiple 2D and 3D medical imaging datasets into a standardized 2D format optimized for VLM training. Each image is paired with structured metadata and precise bounding box annotations for pathological findings.
|
| 34 |
+
|
| 35 |
+
- **Total Images**: 134,201 2D MRI slices
|
| 36 |
+
- **Source Datasets**: 8 publicly available medical imaging datasets
|
| 37 |
+
- **Modalities**: T1w, T1c, T2w, FLAIR, DWI, ADC, TRACE
|
| 38 |
+
- **Orientations**: Axial, Coronal, Sagittal
|
| 39 |
+
- **Pathologies**: Stroke (68,136), Glioma (57,964), Meningioma (4,168), Pituitary Adenoma (3,933)
|
| 40 |
+
|
| 41 |
+
## Dataset Purpose
|
| 42 |
+
|
| 43 |
+
This dataset serves as a fine-tuning corpus for vision-language models to perform:
|
| 44 |
+
- Medical image interpretation and localization
|
| 45 |
+
- Pathology detection with spatial grounding
|
| 46 |
+
- Multimodal medical question answering
|
| 47 |
+
- Cross-modal medical image understanding
|
| 48 |
+
|
| 49 |
+
## Data Processing
|
| 50 |
+
|
| 51 |
+
- **3D to 2D Conversion**: 3D volumes converted to optimal 2D slices using intelligent slice selection
|
| 52 |
+
- **Standardization**: Unified schema across heterogeneous source datasets
|
| 53 |
+
- **Quality Control**: Verified image paths and validated bounding box annotations
|
| 54 |
+
- **Format**: JPG images (256×256) with JSON bounding box metadata
|
| 55 |
+
|
| 56 |
+
## Usage
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from datasets import load_dataset
|
| 60 |
+
import json
|
| 61 |
+
|
| 62 |
+
dataset = load_dataset("liamchalcroft/brainbox")
|
| 63 |
+
|
| 64 |
+
# Example: Load an image with its annotations
|
| 65 |
+
sample = dataset["train"][0]
|
| 66 |
+
image = sample["image"]
|
| 67 |
+
diagnosis = sample["diagnosis"]
|
| 68 |
+
bboxes = json.loads(sample["bounding_boxes"]) # Parse JSON string
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## Schema
|
| 72 |
+
|
| 73 |
+
| Field | Type | Description |
|
| 74 |
+
|-------|------|-------------|
|
| 75 |
+
| `image` | Image | 2D MRI slice (JPG format) |
|
| 76 |
+
| `diagnosis` | string | Primary medical diagnosis |
|
| 77 |
+
| `pathology_subtype` | string | Specific pathology classification |
|
| 78 |
+
| `lesion_type` | string | General lesion category (neoplasm/vascular_lesion) |
|
| 79 |
+
| `bounding_boxes` | string | JSON array of lesion bounding boxes |
|
| 80 |
+
| `modality` | string | MRI sequence type |
|
| 81 |
+
| `orientation` | string | Slice orientation |
|
| 82 |
+
| `has_pathology` | bool | Presence of pathological findings |
|
| 83 |
+
| `subject_id` | string | Anonymized subject identifier |
|
| 84 |
+
| Additional fields | - | Demographics, imaging parameters, anatomical locations |
|
| 85 |
+
|
| 86 |
+
## Bounding Box Format
|
| 87 |
+
|
| 88 |
+
```json
|
| 89 |
+
[
|
| 90 |
+
{
|
| 91 |
+
"x_min": 128, "y_min": 62,
|
| 92 |
+
"x_max": 139, "y_max": 66,
|
| 93 |
+
"width": 11, "height": 4, "area": 44
|
| 94 |
+
}
|
| 95 |
+
]
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
## Applications
|
| 99 |
+
|
| 100 |
+
- **VLM Fine-tuning**: Train vision-language models for medical image understanding
|
| 101 |
+
- **Object Detection**: Develop pathology localization models
|
| 102 |
+
- **Medical AI**: Build diagnostic assistance systems
|
| 103 |
+
- **Research**: Cross-modal medical image analysis studies
|
| 104 |
+
|
| 105 |
+
## Data Distribution
|
| 106 |
+
|
| 107 |
+
- **Vascular Lesions**: 68,136 images (acute, chronic, subacute stroke)
|
| 108 |
+
- **Neoplasms**: 66,065 images (glioma, meningioma, pituitary adenoma)
|
| 109 |
+
- **Balanced Orientations**: ~33% each (axial, coronal, sagittal)
|
| 110 |
+
- **Multi-modal**: 7 MRI sequence types
|
| 111 |
+
|
| 112 |
+
## Limitations
|
| 113 |
+
|
| 114 |
+
- Converted to 2D format (original 3D context reduced)
|
| 115 |
+
- Heterogeneous source data quality
|
| 116 |
+
- Limited demographic metadata coverage
|
| 117 |
+
- Bounding boxes simplified from original segmentation masks
|
| 118 |
+
|
| 119 |
+
## Citation
|
| 120 |
+
|
| 121 |
+
If you use this dataset, please cite the original source datasets. This is a processed compilation for VLM research purposes.
|
| 122 |
+
|
| 123 |
+
## License
|
| 124 |
+
|
| 125 |
+
Individual source datasets retain their original licenses. Verify licensing terms for your specific use case.
|