Upload data_processing.py with huggingface_hub
Browse files- data_processing.py +484 -0
data_processing.py
ADDED
|
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Phase 2: Data Processing for Human Skeletal Muscle Aging Atlas
|
| 4 |
+
==============================================================
|
| 5 |
+
|
| 6 |
+
Processes the H5AD file into HuggingFace-compatible parquet files:
|
| 7 |
+
- Expression matrix (sparse -> dense conversion)
|
| 8 |
+
- Sample metadata (cell-level information)
|
| 9 |
+
- Feature metadata (gene information)
|
| 10 |
+
- Dimensionality reduction projections (scVI, UMAP, PCA, t-SNE)
|
| 11 |
+
- Unstructured metadata (all additional data)
|
| 12 |
+
|
| 13 |
+
Requirements:
|
| 14 |
+
- Large memory for 183K × 29K matrix processing
|
| 15 |
+
- Sparse matrix handling for efficiency
|
| 16 |
+
- Proper data type optimization
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import logging
|
| 20 |
+
import json
|
| 21 |
+
import time
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
from typing import Dict, Any, Optional
|
| 24 |
+
import shutil
|
| 25 |
+
|
| 26 |
+
import numpy as np
|
| 27 |
+
import pandas as pd
|
| 28 |
+
import scanpy as sc
|
| 29 |
+
from scipy import sparse
|
| 30 |
+
import pyarrow.parquet as pq
|
| 31 |
+
import warnings
|
| 32 |
+
|
| 33 |
+
# Configure scanpy
|
| 34 |
+
sc.settings.verbosity = 3
|
| 35 |
+
sc.settings.set_figure_params(dpi=80, facecolor='white')
|
| 36 |
+
|
| 37 |
+
# Setup logging
|
| 38 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 39 |
+
logger = logging.getLogger(__name__)
|
| 40 |
+
|
| 41 |
+
def make_json_serializable(obj: Any) -> Any:
|
| 42 |
+
"""Convert numpy arrays and other non-serializable objects for JSON"""
|
| 43 |
+
if isinstance(obj, np.ndarray):
|
| 44 |
+
return obj.tolist()
|
| 45 |
+
elif isinstance(obj, dict):
|
| 46 |
+
return {k: make_json_serializable(v) for k, v in obj.items()}
|
| 47 |
+
elif isinstance(obj, (list, tuple)):
|
| 48 |
+
return [make_json_serializable(i) for i in obj]
|
| 49 |
+
elif isinstance(obj, (np.integer, np.floating)):
|
| 50 |
+
return obj.item()
|
| 51 |
+
else:
|
| 52 |
+
return obj
|
| 53 |
+
|
| 54 |
+
def log_memory_usage(stage: str, adata: sc.AnnData) -> None:
|
| 55 |
+
"""Log memory usage and dataset info"""
|
| 56 |
+
memory_mb = adata.X.data.nbytes / 1024**2 if sparse.issparse(adata.X) else adata.X.nbytes / 1024**2
|
| 57 |
+
logger.info(f"{stage}: Shape {adata.shape}, Memory: {memory_mb:.1f}MB")
|
| 58 |
+
|
| 59 |
+
def fix_pandas_index_column_bug(parquet_file: Path) -> bool:
|
| 60 |
+
"""
|
| 61 |
+
Fix the pandas __index_level_0__ bug in parquet files
|
| 62 |
+
|
| 63 |
+
This is a known bug in pandas/PyArrow where pandas saves the index as an extra
|
| 64 |
+
'__index_level_0__' column when writing to parquet format.
|
| 65 |
+
This is a known upstream issue with no planned fix
|
| 66 |
+
|
| 67 |
+
References:
|
| 68 |
+
- https://github.com/pandas-dev/pandas/issues/51664
|
| 69 |
+
- https://github.com/pola-rs/polars/issues/7291
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
parquet_file: Path to the parquet file to fix
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
bool: True if fix was applied successfully, False otherwise
|
| 76 |
+
"""
|
| 77 |
+
logger.info(f"🔧 Checking for pandas __index_level_0__ bug in {parquet_file.name}")
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
# Check if the bug exists
|
| 81 |
+
pf = pq.ParquetFile(parquet_file)
|
| 82 |
+
schema_names = pf.schema_arrow.names
|
| 83 |
+
|
| 84 |
+
if '__index_level_0__' not in schema_names:
|
| 85 |
+
logger.info("✅ No __index_level_0__ column found - file is clean")
|
| 86 |
+
return True
|
| 87 |
+
|
| 88 |
+
logger.warning(f"🐛 Found pandas __index_level_0__ bug - fixing...")
|
| 89 |
+
logger.info(f" Current columns: {len(schema_names)} (expected: {len(schema_names)-1})")
|
| 90 |
+
|
| 91 |
+
# Create backup
|
| 92 |
+
backup_file = parquet_file.with_suffix('.backup.parquet')
|
| 93 |
+
if not backup_file.exists():
|
| 94 |
+
shutil.copy2(parquet_file, backup_file)
|
| 95 |
+
logger.info(f"📦 Backup created: {backup_file.name}")
|
| 96 |
+
|
| 97 |
+
# Apply fix using PyArrow
|
| 98 |
+
table = pq.read_table(parquet_file)
|
| 99 |
+
|
| 100 |
+
# Filter out the problematic column
|
| 101 |
+
columns_to_keep = [name for name in table.column_names if name != '__index_level_0__']
|
| 102 |
+
clean_table = table.select(columns_to_keep)
|
| 103 |
+
|
| 104 |
+
# Write clean table to temporary file first
|
| 105 |
+
temp_file = parquet_file.with_suffix('.temp.parquet')
|
| 106 |
+
pq.write_table(clean_table, temp_file, compression='snappy')
|
| 107 |
+
|
| 108 |
+
# Verify the fix
|
| 109 |
+
temp_pf = pq.ParquetFile(temp_file)
|
| 110 |
+
temp_schema_names = temp_pf.schema_arrow.names
|
| 111 |
+
|
| 112 |
+
if '__index_level_0__' not in temp_schema_names:
|
| 113 |
+
# Replace original with fixed version
|
| 114 |
+
shutil.move(temp_file, parquet_file)
|
| 115 |
+
logger.info(f"✅ Fixed pandas __index_level_0__ bug")
|
| 116 |
+
logger.info(f" Column count: {len(schema_names)} → {len(temp_schema_names)}")
|
| 117 |
+
return True
|
| 118 |
+
else:
|
| 119 |
+
# Fix failed, clean up
|
| 120 |
+
temp_file.unlink()
|
| 121 |
+
logger.error("❌ Fix verification failed")
|
| 122 |
+
return False
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
logger.error(f"❌ Error fixing pandas index bug: {e}")
|
| 126 |
+
return False
|
| 127 |
+
|
| 128 |
+
def process_expression_matrix(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
|
| 129 |
+
"""
|
| 130 |
+
Process and save expression matrix
|
| 131 |
+
|
| 132 |
+
Strategy:
|
| 133 |
+
- Check sparsity and memory requirements
|
| 134 |
+
- Convert to dense if manageable, keep sparse if too large
|
| 135 |
+
- Use appropriate data types (float32) for efficiency
|
| 136 |
+
"""
|
| 137 |
+
logger.info("Starting expression matrix processing...")
|
| 138 |
+
log_memory_usage("Expression matrix", adata)
|
| 139 |
+
|
| 140 |
+
# Calculate memory requirements for dense conversion
|
| 141 |
+
dense_memory_gb = (adata.n_obs * adata.n_vars * 4) / (1024**3) # float32 = 4 bytes
|
| 142 |
+
sparsity = 1.0 - (adata.X.nnz / (adata.n_obs * adata.n_vars))
|
| 143 |
+
|
| 144 |
+
logger.info(f"Dense conversion would require: {dense_memory_gb:.2f}GB")
|
| 145 |
+
logger.info(f"Current sparsity: {sparsity:.2%}")
|
| 146 |
+
|
| 147 |
+
output_file = output_dir / f"skeletal_muscle_{method}_expression.parquet"
|
| 148 |
+
|
| 149 |
+
if dense_memory_gb > 8.0: # If >8GB, process in chunks
|
| 150 |
+
logger.info("Large matrix detected, processing in chunks...")
|
| 151 |
+
chunk_size = 10000
|
| 152 |
+
chunks = []
|
| 153 |
+
|
| 154 |
+
for i in range(0, adata.n_obs, chunk_size):
|
| 155 |
+
end_idx = min(i + chunk_size, adata.n_obs)
|
| 156 |
+
chunk = adata[i:end_idx, :].copy()
|
| 157 |
+
|
| 158 |
+
if sparse.issparse(chunk.X):
|
| 159 |
+
chunk_dense = chunk.X.toarray().astype(np.float32)
|
| 160 |
+
else:
|
| 161 |
+
chunk_dense = chunk.X.astype(np.float32)
|
| 162 |
+
|
| 163 |
+
chunk_df = pd.DataFrame(
|
| 164 |
+
chunk_dense,
|
| 165 |
+
index=chunk.obs_names,
|
| 166 |
+
columns=chunk.var_names
|
| 167 |
+
)
|
| 168 |
+
chunks.append(chunk_df)
|
| 169 |
+
logger.info(f"Processed chunk {i//chunk_size + 1}/{(adata.n_obs-1)//chunk_size + 1}")
|
| 170 |
+
|
| 171 |
+
# Combine chunks
|
| 172 |
+
expression_df = pd.concat(chunks, axis=0)
|
| 173 |
+
del chunks # Free memory
|
| 174 |
+
|
| 175 |
+
else:
|
| 176 |
+
# Convert to dense in one go
|
| 177 |
+
logger.info("Converting to dense matrix...")
|
| 178 |
+
if sparse.issparse(adata.X):
|
| 179 |
+
expression_data = adata.X.toarray().astype(np.float32)
|
| 180 |
+
else:
|
| 181 |
+
expression_data = adata.X.astype(np.float32)
|
| 182 |
+
|
| 183 |
+
expression_df = pd.DataFrame(
|
| 184 |
+
expression_data,
|
| 185 |
+
index=adata.obs_names,
|
| 186 |
+
columns=adata.var_names
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Save with compression
|
| 190 |
+
logger.info(f"Saving expression matrix: {expression_df.shape}")
|
| 191 |
+
expression_df.to_parquet(output_file, compression='snappy')
|
| 192 |
+
|
| 193 |
+
# Apply pandas __index_level_0__ bug fix
|
| 194 |
+
# This is a known issue where pandas saves the index as an extra column
|
| 195 |
+
fix_success = fix_pandas_index_column_bug(output_file)
|
| 196 |
+
|
| 197 |
+
stats = {
|
| 198 |
+
'file': str(output_file),
|
| 199 |
+
'shape': list(expression_df.shape),
|
| 200 |
+
'memory_gb': dense_memory_gb,
|
| 201 |
+
'sparsity_percent': sparsity * 100,
|
| 202 |
+
'dtype': str(expression_df.dtypes.iloc[0]),
|
| 203 |
+
'pandas_index_bug_fixed': fix_success
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
logger.info(f"✅ Expression matrix saved: {expression_df.shape}")
|
| 207 |
+
return stats
|
| 208 |
+
|
| 209 |
+
def process_sample_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
|
| 210 |
+
"""Process and save sample (cell) metadata"""
|
| 211 |
+
logger.info("Processing sample metadata...")
|
| 212 |
+
|
| 213 |
+
sample_metadata = adata.obs.copy()
|
| 214 |
+
|
| 215 |
+
# Verify critical columns exist
|
| 216 |
+
critical_cols = ['Age_group', 'Sex', 'annotation_level0', 'DonorID', 'batch']
|
| 217 |
+
missing_cols = [col for col in critical_cols if col not in sample_metadata.columns]
|
| 218 |
+
|
| 219 |
+
if missing_cols:
|
| 220 |
+
logger.warning(f"Missing critical columns: {missing_cols}")
|
| 221 |
+
else:
|
| 222 |
+
logger.info("✅ All critical metadata columns present")
|
| 223 |
+
|
| 224 |
+
# Add standardized age column if needed
|
| 225 |
+
if 'age_numeric' not in sample_metadata.columns and 'Age_group' in sample_metadata.columns:
|
| 226 |
+
# Convert age groups to numeric (use midpoint of range)
|
| 227 |
+
age_mapping = {
|
| 228 |
+
'15-20': 17.5, '20-25': 22.5, '25-30': 27.5, '35-40': 37.5,
|
| 229 |
+
'50-55': 52.5, '55-60': 57.5, '60-65': 62.5, '70-75': 72.5
|
| 230 |
+
}
|
| 231 |
+
sample_metadata['age_numeric'] = sample_metadata['Age_group'].map(age_mapping)
|
| 232 |
+
logger.info("Added numeric age column")
|
| 233 |
+
|
| 234 |
+
# Optimize data types
|
| 235 |
+
for col in sample_metadata.columns:
|
| 236 |
+
if sample_metadata[col].dtype == 'object':
|
| 237 |
+
# Convert categorical strings to category type for efficiency
|
| 238 |
+
if sample_metadata[col].nunique() < len(sample_metadata) * 0.5:
|
| 239 |
+
sample_metadata[col] = sample_metadata[col].astype('category')
|
| 240 |
+
|
| 241 |
+
output_file = output_dir / f"skeletal_muscle_{method}_sample_metadata.parquet"
|
| 242 |
+
sample_metadata.to_parquet(output_file, compression='snappy')
|
| 243 |
+
|
| 244 |
+
stats = {
|
| 245 |
+
'file': str(output_file),
|
| 246 |
+
'shape': list(sample_metadata.shape),
|
| 247 |
+
'columns': list(sample_metadata.columns),
|
| 248 |
+
'missing_columns': missing_cols,
|
| 249 |
+
'age_groups': sample_metadata['Age_group'].value_counts().to_dict() if 'Age_group' in sample_metadata.columns else {},
|
| 250 |
+
'cell_types': sample_metadata['annotation_level0'].value_counts().head(10).to_dict() if 'annotation_level0' in sample_metadata.columns else {}
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
logger.info(f"✅ Sample metadata saved: {sample_metadata.shape}")
|
| 254 |
+
return stats
|
| 255 |
+
|
| 256 |
+
def process_feature_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
|
| 257 |
+
"""Process and save feature (gene) metadata"""
|
| 258 |
+
logger.info("Processing feature metadata...")
|
| 259 |
+
|
| 260 |
+
feature_metadata = adata.var.copy()
|
| 261 |
+
|
| 262 |
+
# Ensure gene IDs are present
|
| 263 |
+
if 'gene_ids' not in feature_metadata.columns:
|
| 264 |
+
feature_metadata['gene_ids'] = feature_metadata.index
|
| 265 |
+
logger.info("Added gene_ids column from index")
|
| 266 |
+
|
| 267 |
+
# Verify gene symbols
|
| 268 |
+
if 'SYMBOL' in feature_metadata.columns:
|
| 269 |
+
n_symbols = feature_metadata['SYMBOL'].notna().sum()
|
| 270 |
+
logger.info(f"Gene symbols available for {n_symbols}/{len(feature_metadata)} genes")
|
| 271 |
+
|
| 272 |
+
output_file = output_dir / f"skeletal_muscle_{method}_feature_metadata.parquet"
|
| 273 |
+
feature_metadata.to_parquet(output_file, compression='snappy')
|
| 274 |
+
|
| 275 |
+
stats = {
|
| 276 |
+
'file': str(output_file),
|
| 277 |
+
'shape': list(feature_metadata.shape),
|
| 278 |
+
'columns': list(feature_metadata.columns),
|
| 279 |
+
'has_symbols': 'SYMBOL' in feature_metadata.columns,
|
| 280 |
+
'has_ensembl': 'ENSEMBL' in feature_metadata.columns
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
logger.info(f"✅ Feature metadata saved: {feature_metadata.shape}")
|
| 284 |
+
return stats
|
| 285 |
+
|
| 286 |
+
def compute_missing_projections(adata: sc.AnnData) -> Dict[str, bool]:
|
| 287 |
+
"""Compute missing dimensionality reductions"""
|
| 288 |
+
logger.info("Checking and computing missing projections...")
|
| 289 |
+
|
| 290 |
+
computed = {}
|
| 291 |
+
|
| 292 |
+
# Check PCA
|
| 293 |
+
if 'X_pca' not in adata.obsm:
|
| 294 |
+
logger.info("Computing PCA (50 components)...")
|
| 295 |
+
try:
|
| 296 |
+
sc.pp.pca(adata, n_comps=50, svd_solver='arpack')
|
| 297 |
+
computed['X_pca'] = True
|
| 298 |
+
logger.info("✅ PCA computed")
|
| 299 |
+
except Exception as e:
|
| 300 |
+
logger.error(f"PCA computation failed: {e}")
|
| 301 |
+
computed['X_pca'] = False
|
| 302 |
+
else:
|
| 303 |
+
computed['X_pca'] = True
|
| 304 |
+
logger.info("✅ PCA already exists")
|
| 305 |
+
|
| 306 |
+
# Check t-SNE
|
| 307 |
+
if 'X_tsne' not in adata.obsm:
|
| 308 |
+
logger.info("Computing t-SNE...")
|
| 309 |
+
try:
|
| 310 |
+
# Use existing neighbors if available, otherwise compute
|
| 311 |
+
if 'neighbors' not in adata.uns:
|
| 312 |
+
logger.info("Computing neighbors for t-SNE...")
|
| 313 |
+
sc.pp.neighbors(adata, n_neighbors=15, n_pcs=40)
|
| 314 |
+
|
| 315 |
+
sc.tl.tsne(adata, perplexity=30, n_jobs=8)
|
| 316 |
+
computed['X_tsne'] = True
|
| 317 |
+
logger.info("✅ t-SNE computed")
|
| 318 |
+
except Exception as e:
|
| 319 |
+
logger.error(f"t-SNE computation failed: {e}")
|
| 320 |
+
computed['X_tsne'] = False
|
| 321 |
+
else:
|
| 322 |
+
computed['X_tsne'] = True
|
| 323 |
+
logger.info("✅ t-SNE already exists")
|
| 324 |
+
|
| 325 |
+
return computed
|
| 326 |
+
|
| 327 |
+
def process_projections(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
|
| 328 |
+
"""Process and save all dimensionality reduction projections"""
|
| 329 |
+
logger.info("Processing dimensionality reduction projections...")
|
| 330 |
+
|
| 331 |
+
# First compute any missing projections
|
| 332 |
+
computed_status = compute_missing_projections(adata)
|
| 333 |
+
|
| 334 |
+
projection_stats = {}
|
| 335 |
+
expected_projections = ['X_scVI', 'X_umap', 'X_pca', 'X_tsne']
|
| 336 |
+
|
| 337 |
+
for proj_name in expected_projections:
|
| 338 |
+
if proj_name in adata.obsm:
|
| 339 |
+
proj_data = adata.obsm[proj_name]
|
| 340 |
+
|
| 341 |
+
# Convert to DataFrame
|
| 342 |
+
proj_df = pd.DataFrame(
|
| 343 |
+
proj_data,
|
| 344 |
+
index=adata.obs_names,
|
| 345 |
+
columns=[f"{proj_name.split('_')[1].upper()}{i+1}" for i in range(proj_data.shape[1])]
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
# Save projection
|
| 349 |
+
output_file = output_dir / f"skeletal_muscle_{method}_projection_{proj_name}.parquet"
|
| 350 |
+
proj_df.to_parquet(output_file, compression='snappy')
|
| 351 |
+
|
| 352 |
+
projection_stats[proj_name] = {
|
| 353 |
+
'file': str(output_file),
|
| 354 |
+
'shape': list(proj_df.shape),
|
| 355 |
+
'computed_now': computed_status.get(proj_name, False)
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
logger.info(f"✅ Saved {proj_name}: {proj_df.shape}")
|
| 359 |
+
else:
|
| 360 |
+
logger.warning(f"❌ {proj_name} not available")
|
| 361 |
+
projection_stats[proj_name] = {'available': False}
|
| 362 |
+
|
| 363 |
+
return projection_stats
|
| 364 |
+
|
| 365 |
+
def process_unstructured_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
|
| 366 |
+
"""Process and save unstructured metadata (uns)"""
|
| 367 |
+
logger.info("Processing unstructured metadata...")
|
| 368 |
+
|
| 369 |
+
try:
|
| 370 |
+
# Make data JSON serializable
|
| 371 |
+
unstructured_data = make_json_serializable(adata.uns)
|
| 372 |
+
|
| 373 |
+
output_file = output_dir / f"skeletal_muscle_{method}_unstructured_metadata.json"
|
| 374 |
+
|
| 375 |
+
with open(output_file, 'w') as f:
|
| 376 |
+
json.dump(unstructured_data, f, indent=2)
|
| 377 |
+
|
| 378 |
+
# Count keys and estimate size
|
| 379 |
+
key_count = len(unstructured_data) if isinstance(unstructured_data, dict) else 0
|
| 380 |
+
file_size_mb = output_file.stat().st_size / (1024**2)
|
| 381 |
+
|
| 382 |
+
stats = {
|
| 383 |
+
'file': str(output_file),
|
| 384 |
+
'key_count': key_count,
|
| 385 |
+
'file_size_mb': round(file_size_mb, 2),
|
| 386 |
+
'top_keys': list(unstructured_data.keys())[:10] if isinstance(unstructured_data, dict) else []
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
logger.info(f"✅ Unstructured metadata saved: {key_count} keys, {file_size_mb:.1f}MB")
|
| 390 |
+
return stats
|
| 391 |
+
|
| 392 |
+
except Exception as e:
|
| 393 |
+
logger.error(f"Failed to process unstructured metadata: {e}")
|
| 394 |
+
return {'error': str(e)}
|
| 395 |
+
|
| 396 |
+
def main():
|
| 397 |
+
"""Main processing function"""
|
| 398 |
+
start_time = time.time()
|
| 399 |
+
logger.info("=== Phase 2: Data Processing Started ===")
|
| 400 |
+
|
| 401 |
+
# Paths
|
| 402 |
+
data_file = Path("data/SKM_human_pp_cells2nuclei_2023-06-22.h5ad")
|
| 403 |
+
output_dir = Path("processed")
|
| 404 |
+
output_dir.mkdir(exist_ok=True)
|
| 405 |
+
|
| 406 |
+
# Configuration
|
| 407 |
+
method = "10x" # From exploration results
|
| 408 |
+
|
| 409 |
+
# Load data
|
| 410 |
+
logger.info(f"Loading data from {data_file}...")
|
| 411 |
+
try:
|
| 412 |
+
adata = sc.read_h5ad(data_file)
|
| 413 |
+
logger.info(f"✅ Data loaded: {adata.shape}")
|
| 414 |
+
log_memory_usage("Initial", adata)
|
| 415 |
+
except Exception as e:
|
| 416 |
+
logger.error(f"Failed to load data: {e}")
|
| 417 |
+
return
|
| 418 |
+
|
| 419 |
+
# Processing results tracking
|
| 420 |
+
processing_results = {
|
| 421 |
+
'dataset_info': {
|
| 422 |
+
'shape': list(adata.shape),
|
| 423 |
+
'method': method,
|
| 424 |
+
'processing_time': None,
|
| 425 |
+
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
|
| 426 |
+
}
|
| 427 |
+
}
|
| 428 |
+
|
| 429 |
+
try:
|
| 430 |
+
# Task 2.1: Expression Matrix
|
| 431 |
+
logger.info("\n🧬 Task 2.1: Processing Expression Matrix")
|
| 432 |
+
processing_results['expression'] = process_expression_matrix(adata, method, output_dir)
|
| 433 |
+
|
| 434 |
+
# Task 2.2: Sample Metadata
|
| 435 |
+
logger.info("\n📊 Task 2.2: Processing Sample Metadata")
|
| 436 |
+
processing_results['sample_metadata'] = process_sample_metadata(adata, method, output_dir)
|
| 437 |
+
|
| 438 |
+
# Task 2.3: Feature Metadata
|
| 439 |
+
logger.info("\n🧪 Task 2.3: Processing Feature Metadata")
|
| 440 |
+
processing_results['feature_metadata'] = process_feature_metadata(adata, method, output_dir)
|
| 441 |
+
|
| 442 |
+
# Task 2.4: Dimensionality Reductions
|
| 443 |
+
logger.info("\n📈 Task 2.4: Processing Projections")
|
| 444 |
+
processing_results['projections'] = process_projections(adata, method, output_dir)
|
| 445 |
+
|
| 446 |
+
# Task 2.5: Unstructured Metadata
|
| 447 |
+
logger.info("\n📋 Task 2.5: Processing Unstructured Metadata")
|
| 448 |
+
processing_results['unstructured'] = process_unstructured_metadata(adata, method, output_dir)
|
| 449 |
+
|
| 450 |
+
# Save processing summary
|
| 451 |
+
processing_time = time.time() - start_time
|
| 452 |
+
processing_results['dataset_info']['processing_time'] = f"{processing_time:.1f}s"
|
| 453 |
+
|
| 454 |
+
summary_file = output_dir / "phase2_processing_summary.json"
|
| 455 |
+
with open(summary_file, 'w') as f:
|
| 456 |
+
json.dump(processing_results, f, indent=2)
|
| 457 |
+
|
| 458 |
+
logger.info(f"\n✅ Phase 2 Processing Complete!")
|
| 459 |
+
logger.info(f"⏱️ Total time: {processing_time:.1f}s")
|
| 460 |
+
logger.info(f"📄 Summary saved: {summary_file}")
|
| 461 |
+
|
| 462 |
+
# List all created files
|
| 463 |
+
logger.info("\n📁 Created Files:")
|
| 464 |
+
for file_path in output_dir.glob("skeletal_muscle_*.parquet"):
|
| 465 |
+
size_mb = file_path.stat().st_size / (1024**2)
|
| 466 |
+
logger.info(f" {file_path.name} ({size_mb:.1f}MB)")
|
| 467 |
+
|
| 468 |
+
for file_path in output_dir.glob("skeletal_muscle_*.json"):
|
| 469 |
+
size_mb = file_path.stat().st_size / (1024**2)
|
| 470 |
+
logger.info(f" {file_path.name} ({size_mb:.1f}MB)")
|
| 471 |
+
|
| 472 |
+
except Exception as e:
|
| 473 |
+
logger.error(f"Processing failed: {e}")
|
| 474 |
+
processing_results['error'] = str(e)
|
| 475 |
+
|
| 476 |
+
# Save error summary
|
| 477 |
+
error_file = output_dir / "phase2_error_summary.json"
|
| 478 |
+
with open(error_file, 'w') as f:
|
| 479 |
+
json.dump(processing_results, f, indent=2)
|
| 480 |
+
|
| 481 |
+
raise
|
| 482 |
+
|
| 483 |
+
if __name__ == "__main__":
|
| 484 |
+
main()
|