#!/usr/bin/env python3 """ Phase 2: Data Processing for Human Skeletal Muscle Aging Atlas ============================================================== Processes the H5AD file into HuggingFace-compatible parquet files: - Expression matrix (sparse -> dense conversion) - Sample metadata (cell-level information) - Feature metadata (gene information) - Dimensionality reduction projections (scVI, UMAP, PCA, t-SNE) - Unstructured metadata (all additional data) Requirements: - Large memory for 183K ร— 29K matrix processing - Sparse matrix handling for efficiency - Proper data type optimization """ import logging import json import time from pathlib import Path from typing import Dict, Any, Optional import shutil import numpy as np import pandas as pd import scanpy as sc from scipy import sparse import pyarrow.parquet as pq import warnings # Configure scanpy sc.settings.verbosity = 3 sc.settings.set_figure_params(dpi=80, facecolor='white') # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def make_json_serializable(obj: Any) -> Any: """Convert numpy arrays and other non-serializable objects for JSON""" if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, dict): return {k: make_json_serializable(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): return [make_json_serializable(i) for i in obj] elif isinstance(obj, (np.integer, np.floating)): return obj.item() else: return obj def log_memory_usage(stage: str, adata: sc.AnnData) -> None: """Log memory usage and dataset info""" memory_mb = adata.X.data.nbytes / 1024**2 if sparse.issparse(adata.X) else adata.X.nbytes / 1024**2 logger.info(f"{stage}: Shape {adata.shape}, Memory: {memory_mb:.1f}MB") def fix_pandas_index_column_bug(parquet_file: Path) -> bool: """ Fix the pandas __index_level_0__ bug in parquet files This is a known bug in pandas/PyArrow where pandas saves the index as an extra '__index_level_0__' column when writing to parquet format. This is a known upstream issue with no planned fix References: - https://github.com/pandas-dev/pandas/issues/51664 - https://github.com/pola-rs/polars/issues/7291 Args: parquet_file: Path to the parquet file to fix Returns: bool: True if fix was applied successfully, False otherwise """ logger.info(f"๐Ÿ”ง Checking for pandas __index_level_0__ bug in {parquet_file.name}") try: # Check if the bug exists pf = pq.ParquetFile(parquet_file) schema_names = pf.schema_arrow.names if '__index_level_0__' not in schema_names: logger.info("โœ… No __index_level_0__ column found - file is clean") return True logger.warning(f"๐Ÿ› Found pandas __index_level_0__ bug - fixing...") logger.info(f" Current columns: {len(schema_names)} (expected: {len(schema_names)-1})") # Create backup backup_file = parquet_file.with_suffix('.backup.parquet') if not backup_file.exists(): shutil.copy2(parquet_file, backup_file) logger.info(f"๐Ÿ“ฆ Backup created: {backup_file.name}") # Apply fix using PyArrow table = pq.read_table(parquet_file) # Filter out the problematic column columns_to_keep = [name for name in table.column_names if name != '__index_level_0__'] clean_table = table.select(columns_to_keep) # Write clean table to temporary file first temp_file = parquet_file.with_suffix('.temp.parquet') pq.write_table(clean_table, temp_file, compression='snappy') # Verify the fix temp_pf = pq.ParquetFile(temp_file) temp_schema_names = temp_pf.schema_arrow.names if '__index_level_0__' not in temp_schema_names: # Replace original with fixed version shutil.move(temp_file, parquet_file) logger.info(f"โœ… Fixed pandas __index_level_0__ bug") logger.info(f" Column count: {len(schema_names)} โ†’ {len(temp_schema_names)}") return True else: # Fix failed, clean up temp_file.unlink() logger.error("โŒ Fix verification failed") return False except Exception as e: logger.error(f"โŒ Error fixing pandas index bug: {e}") return False def process_expression_matrix(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]: """ Process and save expression matrix Strategy: - Check sparsity and memory requirements - Convert to dense if manageable, keep sparse if too large - Use appropriate data types (float32) for efficiency """ logger.info("Starting expression matrix processing...") log_memory_usage("Expression matrix", adata) # Calculate memory requirements for dense conversion dense_memory_gb = (adata.n_obs * adata.n_vars * 4) / (1024**3) # float32 = 4 bytes sparsity = 1.0 - (adata.X.nnz / (adata.n_obs * adata.n_vars)) logger.info(f"Dense conversion would require: {dense_memory_gb:.2f}GB") logger.info(f"Current sparsity: {sparsity:.2%}") output_file = output_dir / f"skeletal_muscle_{method}_expression.parquet" if dense_memory_gb > 8.0: # If >8GB, process in chunks logger.info("Large matrix detected, processing in chunks...") chunk_size = 10000 chunks = [] for i in range(0, adata.n_obs, chunk_size): end_idx = min(i + chunk_size, adata.n_obs) chunk = adata[i:end_idx, :].copy() if sparse.issparse(chunk.X): chunk_dense = chunk.X.toarray().astype(np.float32) else: chunk_dense = chunk.X.astype(np.float32) chunk_df = pd.DataFrame( chunk_dense, index=chunk.obs_names, columns=chunk.var_names ) chunks.append(chunk_df) logger.info(f"Processed chunk {i//chunk_size + 1}/{(adata.n_obs-1)//chunk_size + 1}") # Combine chunks expression_df = pd.concat(chunks, axis=0) del chunks # Free memory else: # Convert to dense in one go logger.info("Converting to dense matrix...") if sparse.issparse(adata.X): expression_data = adata.X.toarray().astype(np.float32) else: expression_data = adata.X.astype(np.float32) expression_df = pd.DataFrame( expression_data, index=adata.obs_names, columns=adata.var_names ) # Save with compression logger.info(f"Saving expression matrix: {expression_df.shape}") expression_df.to_parquet(output_file, compression='snappy') # Apply pandas __index_level_0__ bug fix # This is a known issue where pandas saves the index as an extra column fix_success = fix_pandas_index_column_bug(output_file) stats = { 'file': str(output_file), 'shape': list(expression_df.shape), 'memory_gb': dense_memory_gb, 'sparsity_percent': sparsity * 100, 'dtype': str(expression_df.dtypes.iloc[0]), 'pandas_index_bug_fixed': fix_success } logger.info(f"โœ… Expression matrix saved: {expression_df.shape}") return stats def process_sample_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]: """Process and save sample (cell) metadata""" logger.info("Processing sample metadata...") sample_metadata = adata.obs.copy() # Verify critical columns exist critical_cols = ['Age_group', 'Sex', 'annotation_level0', 'DonorID', 'batch'] missing_cols = [col for col in critical_cols if col not in sample_metadata.columns] if missing_cols: logger.warning(f"Missing critical columns: {missing_cols}") else: logger.info("โœ… All critical metadata columns present") # Add standardized age column if needed if 'age_numeric' not in sample_metadata.columns and 'Age_group' in sample_metadata.columns: # Convert age groups to numeric (use midpoint of range) age_mapping = { '15-20': 17.5, '20-25': 22.5, '25-30': 27.5, '35-40': 37.5, '50-55': 52.5, '55-60': 57.5, '60-65': 62.5, '70-75': 72.5 } sample_metadata['age_numeric'] = sample_metadata['Age_group'].map(age_mapping) logger.info("Added numeric age column") # Optimize data types for col in sample_metadata.columns: if sample_metadata[col].dtype == 'object': # Convert categorical strings to category type for efficiency if sample_metadata[col].nunique() < len(sample_metadata) * 0.5: sample_metadata[col] = sample_metadata[col].astype('category') output_file = output_dir / f"skeletal_muscle_{method}_sample_metadata.parquet" sample_metadata.to_parquet(output_file, compression='snappy') stats = { 'file': str(output_file), 'shape': list(sample_metadata.shape), 'columns': list(sample_metadata.columns), 'missing_columns': missing_cols, 'age_groups': sample_metadata['Age_group'].value_counts().to_dict() if 'Age_group' in sample_metadata.columns else {}, 'cell_types': sample_metadata['annotation_level0'].value_counts().head(10).to_dict() if 'annotation_level0' in sample_metadata.columns else {} } logger.info(f"โœ… Sample metadata saved: {sample_metadata.shape}") return stats def process_feature_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]: """Process and save feature (gene) metadata""" logger.info("Processing feature metadata...") feature_metadata = adata.var.copy() # Ensure gene IDs are present if 'gene_ids' not in feature_metadata.columns: feature_metadata['gene_ids'] = feature_metadata.index logger.info("Added gene_ids column from index") # Verify gene symbols if 'SYMBOL' in feature_metadata.columns: n_symbols = feature_metadata['SYMBOL'].notna().sum() logger.info(f"Gene symbols available for {n_symbols}/{len(feature_metadata)} genes") output_file = output_dir / f"skeletal_muscle_{method}_feature_metadata.parquet" feature_metadata.to_parquet(output_file, compression='snappy') stats = { 'file': str(output_file), 'shape': list(feature_metadata.shape), 'columns': list(feature_metadata.columns), 'has_symbols': 'SYMBOL' in feature_metadata.columns, 'has_ensembl': 'ENSEMBL' in feature_metadata.columns } logger.info(f"โœ… Feature metadata saved: {feature_metadata.shape}") return stats def compute_missing_projections(adata: sc.AnnData) -> Dict[str, bool]: """Compute missing dimensionality reductions""" logger.info("Checking and computing missing projections...") computed = {} # Check PCA if 'X_pca' not in adata.obsm: logger.info("Computing PCA (50 components)...") try: sc.pp.pca(adata, n_comps=50, svd_solver='arpack') computed['X_pca'] = True logger.info("โœ… PCA computed") except Exception as e: logger.error(f"PCA computation failed: {e}") computed['X_pca'] = False else: computed['X_pca'] = True logger.info("โœ… PCA already exists") # Check t-SNE if 'X_tsne' not in adata.obsm: logger.info("Computing t-SNE...") try: # Use existing neighbors if available, otherwise compute if 'neighbors' not in adata.uns: logger.info("Computing neighbors for t-SNE...") sc.pp.neighbors(adata, n_neighbors=15, n_pcs=40) sc.tl.tsne(adata, perplexity=30, n_jobs=8) computed['X_tsne'] = True logger.info("โœ… t-SNE computed") except Exception as e: logger.error(f"t-SNE computation failed: {e}") computed['X_tsne'] = False else: computed['X_tsne'] = True logger.info("โœ… t-SNE already exists") return computed def process_projections(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]: """Process and save all dimensionality reduction projections""" logger.info("Processing dimensionality reduction projections...") # First compute any missing projections computed_status = compute_missing_projections(adata) projection_stats = {} expected_projections = ['X_scVI', 'X_umap', 'X_pca', 'X_tsne'] for proj_name in expected_projections: if proj_name in adata.obsm: proj_data = adata.obsm[proj_name] # Convert to DataFrame proj_df = pd.DataFrame( proj_data, index=adata.obs_names, columns=[f"{proj_name.split('_')[1].upper()}{i+1}" for i in range(proj_data.shape[1])] ) # Save projection output_file = output_dir / f"skeletal_muscle_{method}_projection_{proj_name}.parquet" proj_df.to_parquet(output_file, compression='snappy') projection_stats[proj_name] = { 'file': str(output_file), 'shape': list(proj_df.shape), 'computed_now': computed_status.get(proj_name, False) } logger.info(f"โœ… Saved {proj_name}: {proj_df.shape}") else: logger.warning(f"โŒ {proj_name} not available") projection_stats[proj_name] = {'available': False} return projection_stats def process_unstructured_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]: """Process and save unstructured metadata (uns)""" logger.info("Processing unstructured metadata...") try: # Make data JSON serializable unstructured_data = make_json_serializable(adata.uns) output_file = output_dir / f"skeletal_muscle_{method}_unstructured_metadata.json" with open(output_file, 'w') as f: json.dump(unstructured_data, f, indent=2) # Count keys and estimate size key_count = len(unstructured_data) if isinstance(unstructured_data, dict) else 0 file_size_mb = output_file.stat().st_size / (1024**2) stats = { 'file': str(output_file), 'key_count': key_count, 'file_size_mb': round(file_size_mb, 2), 'top_keys': list(unstructured_data.keys())[:10] if isinstance(unstructured_data, dict) else [] } logger.info(f"โœ… Unstructured metadata saved: {key_count} keys, {file_size_mb:.1f}MB") return stats except Exception as e: logger.error(f"Failed to process unstructured metadata: {e}") return {'error': str(e)} def main(): """Main processing function""" start_time = time.time() logger.info("=== Phase 2: Data Processing Started ===") # Paths data_file = Path("data/SKM_human_pp_cells2nuclei_2023-06-22.h5ad") output_dir = Path("processed") output_dir.mkdir(exist_ok=True) # Configuration method = "10x" # From exploration results # Load data logger.info(f"Loading data from {data_file}...") try: adata = sc.read_h5ad(data_file) logger.info(f"โœ… Data loaded: {adata.shape}") log_memory_usage("Initial", adata) except Exception as e: logger.error(f"Failed to load data: {e}") return # Processing results tracking processing_results = { 'dataset_info': { 'shape': list(adata.shape), 'method': method, 'processing_time': None, 'timestamp': time.strftime('%Y-%m-%d %H:%M:%S') } } try: # Task 2.1: Expression Matrix logger.info("\n๐Ÿงฌ Task 2.1: Processing Expression Matrix") processing_results['expression'] = process_expression_matrix(adata, method, output_dir) # Task 2.2: Sample Metadata logger.info("\n๐Ÿ“Š Task 2.2: Processing Sample Metadata") processing_results['sample_metadata'] = process_sample_metadata(adata, method, output_dir) # Task 2.3: Feature Metadata logger.info("\n๐Ÿงช Task 2.3: Processing Feature Metadata") processing_results['feature_metadata'] = process_feature_metadata(adata, method, output_dir) # Task 2.4: Dimensionality Reductions logger.info("\n๐Ÿ“ˆ Task 2.4: Processing Projections") processing_results['projections'] = process_projections(adata, method, output_dir) # Task 2.5: Unstructured Metadata logger.info("\n๐Ÿ“‹ Task 2.5: Processing Unstructured Metadata") processing_results['unstructured'] = process_unstructured_metadata(adata, method, output_dir) # Save processing summary processing_time = time.time() - start_time processing_results['dataset_info']['processing_time'] = f"{processing_time:.1f}s" summary_file = output_dir / "phase2_processing_summary.json" with open(summary_file, 'w') as f: json.dump(processing_results, f, indent=2) logger.info(f"\nโœ… Phase 2 Processing Complete!") logger.info(f"โฑ๏ธ Total time: {processing_time:.1f}s") logger.info(f"๐Ÿ“„ Summary saved: {summary_file}") # List all created files logger.info("\n๐Ÿ“ Created Files:") for file_path in output_dir.glob("skeletal_muscle_*.parquet"): size_mb = file_path.stat().st_size / (1024**2) logger.info(f" {file_path.name} ({size_mb:.1f}MB)") for file_path in output_dir.glob("skeletal_muscle_*.json"): size_mb = file_path.stat().st_size / (1024**2) logger.info(f" {file_path.name} ({size_mb:.1f}MB)") except Exception as e: logger.error(f"Processing failed: {e}") processing_results['error'] = str(e) # Save error summary error_file = output_dir / "phase2_error_summary.json" with open(error_file, 'w') as f: json.dump(processing_results, f, indent=2) raise if __name__ == "__main__": main()