Datasets:
The dataset viewer is not available for this subset.
Exception: SplitsNotFoundError
Message: The split names could not be parsed from the dataset config.
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
for split_generator in builder._split_generators(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py", line 237, in _split_generators
raise ValueError(
ValueError: `file_name` or `*_file_name` must be present as dictionary key (with type string) in metadata files
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
for split in get_dataset_split_names(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
info = get_dataset_config_info(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
BeepBank-500 (earcons-mini-500)
BeepBank-500 is a compact, fully synthetic earcon/alert mini‑dataset (≈300–500 clips) for UI sound research. It contains short tones and triads generated from a controlled parameter grid (waveform family, f0, duration, envelope, amplitude modulation, and simple Schroeder-style reverbs). The dataset ships with a metadata schema, lightweight baselines, and a data note template for arXiv. Audio is intended for release under CC0-1.0 (public domain). Code is MIT-licensed.
Why this dataset? Reproducible, rights‑clean, and tiny enough to bundle in a 2–3 day sprint as a citable asset. Typical tasks: earcon classification, timbre analysis, f0 regression, onset detection, psychoacoustic proxies.
Quick start (2–3 day plan)
0) Create environment
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -r requirements.txt
1) Generate audio + metadata (≈400 clips by default)
python code/generate_earcons.py --outdir audio --meta metadata/metadata.csv --seed 13 --target_n 400
Optional: change --target_n to 500 for a bigger set.
2) (Optional) Recompute/augment features later
python code/compute_features.py --indir audio --meta_in metadata/metadata.csv --meta_out metadata/metadata.csv
3) Run tiny baselines
# Waveform family classifier (sine/square/triangle/fm_*)
python code/baselines/classify_waveform.py --audio_dir audio --meta metadata/metadata.csv
# f0 regression MAE (Hz) on single‑tone items only
python code/baselines/f0_regression.py --audio_dir audio --meta metadata/metadata.csv
4) Archive and publish
- Create a Zenodo record (v1.0.0) with
/audio,/metadata,/code,README.md,LICENSE,CITATION.cff. - Mirror code on GitHub; connect Zenodo badge; tag a release.
- Submit the arXiv data note using
docs/data_note_arxiv.tex(subject: eess.AS). Link the Zenodo DOI.
5) Data Load
from datasets import load_dataset ds = load_dataset("mandip/beepbank-500")
Folder layout
earcons-mini-500/
├─ audio/ # WAV files (mono, 48kHz, 16-bit PCM)
├─ metadata/
│ ├─ metadata.csv # one row per file with parameters and features
│ └─ LICENSES.md # audio license statement (CC0-1.0)
├─ code/
│ ├─ generate_earcons.py # main generator (no external DSP deps)
│ ├─ compute_features.py # recompute features if needed
│ └─ baselines/
│ ├─ classify_waveform.py
│ └─ f0_regression.py
├─ docs/
│ ├─ data_note_arxiv.tex # 2–3k word data note skeleton
│ └─ figures/
├─ requirements.txt
├─ CITATION.cff
├─ LICENSE # MIT for code
├─ CHANGELOG.md
└─ README.md
Dataset design notes
- Waveforms: sine, square, triangle, FM (2:1 & 3:2), optional chords (major/minor triads).
- Durations: 100/250/500 ms; Envelopes: fast, medium, percussive.
- AM: none, 8 Hz (0.3), 30 Hz (0.5).
- Reverbs: simple Schroeder-style small (
0.3 s) and medium (0.6 s). - Normalization: RMS target with peak cap at −1 dBFS. (If
pyloudnormis installed, LUFS can be computed; normalization remains RMS‑based by default.) - Metadata: includes generation params plus features (peak/rms dBFS, centroid, bandwidth, zcr, proxies).
- Splits: deterministic hash-based (train/val/test).
Licensing
- Audio: CC0‑1.0 (public domain dedication). Keep attribution unnecessary.
- Code: MIT License (see
LICENSE). - If you later add CC‑BY assets, list them in
metadata/LICENSES.mdwith full attribution and URLs.
How to cite
Zenodo DOI : "https://doi.org/10.5281/zenodo.17172015". arxiv : "https://arxiv.org/abs/arXiv:2509.17277"
Maintainer: Mandip Goswami
Scope: niche psychoacoustic/UI earcon research
Keywords: earcon, alarm, psychoacoustics, timbre, AM, ADSR, reverb
- Downloads last month
- 20