```CODE: import torch from diffusers import DiffusionPipeline # switch to "mps" for apple devices pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", dtype=torch.bfloat16, device_map="cuda") prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" image = pipe(prompt).images[0] ``` ERROR: Traceback (most recent call last): File "/tmp/Qwen_Qwen-Image_0vBE6AK.py", line 27, in pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", dtype=torch.bfloat16, device_map="cuda") File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained loaded_sub_model = load_sub_model( library_name=library_name, ...<21 lines>... quantization_config=quantization_config, ) File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs) File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/transformers/modeling_utils.py", line 277, in _wrapper return func(*args, **kwargs) File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/transformers/modeling_utils.py", line 5048, in from_pretrained ) = cls._load_pretrained_model( ~~~~~~~~~~~~~~~~~~~~~~~~~~^ model, ^^^^^^ ...<12 lines>... weights_only=weights_only, ^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/transformers/modeling_utils.py", line 5468, in _load_pretrained_model _error_msgs, disk_offload_index = load_shard_file(args) ~~~~~~~~~~~~~~~^^^^^^ File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/transformers/modeling_utils.py", line 843, in load_shard_file disk_offload_index = _load_state_dict_into_meta_model( model, ...<8 lines>... device_mesh=device_mesh, ) File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/torch/utils/_contextlib.py", line 120, in decorate_context return func(*args, **kwargs) File "/tmp/.cache/uv/environments-v2/29dc976ff856b6da/lib/python3.13/site-packages/transformers/modeling_utils.py", line 770, in _load_state_dict_into_meta_model _load_parameter_into_model(model, param_name, param.to(param_device)) ~~~~~~~~^^^^^^^^^^^^^^ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacity of 22.03 GiB of which 33.12 MiB is free. Including non-PyTorch memory, this process has 21.99 GiB memory in use. Of the allocated memory 21.79 GiB is allocated by PyTorch, and 23.18 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)