text
stringlengths 0
570
|
|---|
Everything was good in black-forest-labs_FLUX.1-Kontext-dev_0.txt
|
```CODE:
|
import torch
|
from diffusers import DiffusionPipeline
|
from diffusers.utils import load_image
|
# switch to "mps" for apple devices
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", dtype=torch.bfloat16, device_map="cuda")
|
prompt = "Turn this cat into a dog"
|
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
|
image = pipe(image=input_image, prompt=prompt).images[0]
|
```
|
ERROR:
|
Traceback (most recent call last):
|
File "/tmp/black-forest-labs_FLUX.1-Kontext-dev_19uhjDC.py", line 28, in <module>
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", dtype=torch.bfloat16, device_map="cuda")
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
return fn(*args, **kwargs)
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained
|
loaded_sub_model = load_sub_model(
|
library_name=library_name,
|
...<21 lines>...
|
quantization_config=quantization_config,
|
)
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model
|
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
return fn(*args, **kwargs)
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1288, in from_pretrained
|
) = cls._load_pretrained_model(
|
~~~~~~~~~~~~~~~~~~~~~~~~~~^
|
model,
|
^^^^^^
|
...<13 lines>...
|
is_parallel_loading_enabled=is_parallel_loading_enabled,
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
)
|
^
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1537, in _load_pretrained_model
|
_caching_allocator_warmup(model, expanded_device_map, dtype, hf_quantizer)
|
~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
File "/tmp/.cache/uv/environments-v2/ca96a1cdc2ecd6c7/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 754, in _caching_allocator_warmup
|
_ = torch.empty(warmup_elems, dtype=dtype, device=device, requires_grad=False)
|
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 22.17 GiB. GPU 0 has a total capacity of 22.03 GiB of which 21.05 GiB is free. Including non-PyTorch memory, this process has 998.00 MiB memory in use. Of the allocated memory 792.19 MiB is allocated by PyTorch, and 19.81 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
Everything was good in black-forest-labs_FLUX.1-dev_0.txt
|
```CODE:
|
import torch
|
from diffusers import DiffusionPipeline
|
# switch to "mps" for apple devices
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", dtype=torch.bfloat16, device_map="cuda")
|
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
|
image = pipe(prompt).images[0]
|
```
|
ERROR:
|
Traceback (most recent call last):
|
File "/tmp/black-forest-labs_FLUX.1-dev_14Yo0Kj.py", line 27, in <module>
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", dtype=torch.bfloat16, device_map="cuda")
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
return fn(*args, **kwargs)
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_utils.py", line 1025, in from_pretrained
|
loaded_sub_model = load_sub_model(
|
library_name=library_name,
|
...<21 lines>...
|
quantization_config=quantization_config,
|
)
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/pipelines/pipeline_loading_utils.py", line 860, in load_sub_model
|
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
|
return fn(*args, **kwargs)
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1288, in from_pretrained
|
) = cls._load_pretrained_model(
|
~~~~~~~~~~~~~~~~~~~~~~~~~~^
|
model,
|
^^^^^^
|
...<13 lines>...
|
is_parallel_loading_enabled=is_parallel_loading_enabled,
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
)
|
^
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/models/modeling_utils.py", line 1537, in _load_pretrained_model
|
_caching_allocator_warmup(model, expanded_device_map, dtype, hf_quantizer)
|
~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
File "/tmp/.cache/uv/environments-v2/b90b3a1935bc74f7/lib/python3.13/site-packages/diffusers/models/model_loading_utils.py", line 754, in _caching_allocator_warmup
|
_ = torch.empty(warmup_elems, dtype=dtype, device=device, requires_grad=False)
|
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 22.17 GiB. GPU 0 has a total capacity of 22.03 GiB of which 3.31 GiB is free. Including non-PyTorch memory, this process has 18.71 GiB memory in use. Of the allocated memory 18.51 GiB is allocated by PyTorch, and 18.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.