# VerSe – Vertebrae Labelling and Segmentation Benchmark ## License **CC BY-SA 4.0** [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/) ## Citation Paper BibTeX: ```bibtex @article{sekuboyina2021verse, title={VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images}, author={Sekuboyina, Anjany and Husseini, Malek E and Bayat, Amirhossein and L{\"o}ffler, Maximilian and Liebl, Hans and Li, Hongwei and Tetteh, Giles and Kuka{\v{c}}ka, Jan and Payer, Christian and {\v{S}}tern, Darko and others}, journal={Medical image analysis}, volume={73}, pages={102166}, year={2021}, publisher={Elsevier} } ``` ## Dataset description The VerSe benchmark, introduced at MICCAI 2019 and 2020, provides multi-detector CT scans for vertebrae labelling and segmentation. It includes 374 scans with over 4,500 vertebrae annotated using a human–machine hybrid approach, enabling the development and evaluation of algorithms across diverse anatomy and acquisition protocols. **Challenge homepage**: https://verse2020.grand-challenge.org/ **Number of CT volumes**: 374 **CT Type**: Multi-detector CT (MDCT) **CT body coverage**: Spine (various fields of view) **Does the dataset include any ground truth annotations?**: Yes **Original GT annotation targets**: Vertebrae C1–L5, transitional T13 and L6 **Number of annotated CT volumes**: 374 **Annotator**: Automated algorithm + manual refinement **Acquisition centers**: - **Pathology/Disease**: Vertebral fractures, metallic implants, and foreign materials **Original dataset download link**: https://github.com/anjany/verse https://osf.io/4skx2/ **Original dataset format**: nifti ## Note VerSe19 contains 160 scans and VerSe20 contains 319 scans; the merged dataset used here totals 374 scans.