--- annotations_creators: - derived language: - code license: mit multilinguality: monolingual source_datasets: - CoIR-Retrieval/CodeSearchNet-ccr task_categories: - text-retrieval task_ids: [] dataset_info: - config_name: go-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 34809839 num_examples: 182735 download_size: 15725909 dataset_size: 34809839 - config_name: go-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 243660 num_examples: 8122 download_size: 99741 dataset_size: 243660 - config_name: go-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 2020824 num_examples: 8122 download_size: 911255 dataset_size: 2020824 - config_name: java-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 49027018 num_examples: 181061 download_size: 19441004 dataset_size: 49027018 - config_name: java-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 328650 num_examples: 10955 download_size: 137077 dataset_size: 328650 - config_name: java-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 3916921 num_examples: 10955 download_size: 1589683 dataset_size: 3916921 - config_name: javascript-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 18616585 num_examples: 65201 download_size: 8405911 dataset_size: 18616585 - config_name: javascript-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 92148 num_examples: 3291 download_size: 40493 dataset_size: 92148 - config_name: javascript-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 1506447 num_examples: 3291 download_size: 637355 dataset_size: 1506447 - config_name: php-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 70164589 num_examples: 268237 download_size: 27534526 dataset_size: 70164589 - config_name: php-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 420420 num_examples: 14014 download_size: 176431 dataset_size: 420420 - config_name: php-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 4928215 num_examples: 14014 download_size: 1879778 dataset_size: 4928215 - config_name: python-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 108454853 num_examples: 280652 download_size: 44304500 dataset_size: 108454853 - config_name: python-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 447540 num_examples: 14918 download_size: 185025 dataset_size: 447540 - config_name: python-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 8455942 num_examples: 14918 download_size: 3542383 dataset_size: 8455942 - config_name: ruby-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 5489759 num_examples: 27588 download_size: 2546854 dataset_size: 5489759 - config_name: ruby-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 35308 num_examples: 1261 download_size: 15588 dataset_size: 35308 - config_name: ruby-queries features: - name: id dtype: string - name: text dtype: string splits: - name: test num_bytes: 354183 num_examples: 1261 download_size: 164078 dataset_size: 354183 configs: - config_name: go-corpus data_files: - split: test path: go-corpus/test-* - config_name: go-qrels data_files: - split: test path: go-qrels/test-* - config_name: go-queries data_files: - split: test path: go-queries/test-* - config_name: java-corpus data_files: - split: test path: java-corpus/test-* - config_name: java-qrels data_files: - split: test path: java-qrels/test-* - config_name: java-queries data_files: - split: test path: java-queries/test-* - config_name: javascript-corpus data_files: - split: test path: javascript-corpus/test-* - config_name: javascript-qrels data_files: - split: test path: javascript-qrels/test-* - config_name: javascript-queries data_files: - split: test path: javascript-queries/test-* - config_name: php-corpus data_files: - split: test path: php-corpus/test-* - config_name: php-qrels data_files: - split: test path: php-qrels/test-* - config_name: php-queries data_files: - split: test path: php-queries/test-* - config_name: python-corpus data_files: - split: test path: python-corpus/test-* - config_name: python-qrels data_files: - split: test path: python-qrels/test-* - config_name: python-queries data_files: - split: test path: python-queries/test-* - config_name: ruby-corpus data_files: - split: test path: ruby-corpus/test-* - config_name: ruby-qrels data_files: - split: test path: ruby-qrels/test-* - config_name: ruby-queries data_files: - split: test path: ruby-queries/test-* tags: - mteb - text ---
The dataset is a collection of code snippets. The task is to retrieve the most relevant code snippet for a given code snippet. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Programming, Written | | Reference | https://arxiv.org/abs/2407.02883 | Source datasets: - [CoIR-Retrieval/CodeSearchNet-ccr](https://huggingface.co/datasets/CoIR-Retrieval/CodeSearchNet-ccr) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("CodeSearchNetCCRetrieval") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{li2024coircomprehensivebenchmarkcode, archiveprefix = {arXiv}, author = {Xiangyang Li and Kuicai Dong and Yi Quan Lee and Wei Xia and Yichun Yin and Hao Zhang and Yong Liu and Yasheng Wang and Ruiming Tang}, eprint = {2407.02883}, primaryclass = {cs.IR}, title = {CoIR: A Comprehensive Benchmark for Code Information Retrieval Models}, url = {https://arxiv.org/abs/2407.02883}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics